
Fast Subspace Clustering Based on 
the Kronecker Product

Lei Zhou1, Xiao Bai1, Liang Zhang1, Jun Zhou2, Edwin Hancock3

1. School of Computer Science and Engineering and Beijing Advanced Innovation
Center for Big Data and Brain Computing, Beihang University, Beijing, China

2. Information and Communication Technology, Griffith University, Nathan, Australia
3. Department of Computer Science, University of York, York, UK

Subspace clustering is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller

than the ambient dimension. Spectral clustering, as one of the main approaches to subspace clustering, often takes on a sparse representation or a low-rank

representation to learn a block diagonal self-representation matrix for subspace generation. However, existing methods require solving a large scale convex

optimization problem with a large set of data, with computational complexity reaches O(N3) for N data points. Therefore, the efficiency and scalability of

traditional spectral clustering methods can not be guaranteed for large scale datasets. In this paper, we propose a subspace clustering model based on the

Kronecker product. Due to the property that the Kronecker product of a block diagonal matrix with any other matrix is still a block diagonal matrix, we can

efficiently learn the representation matrix which is formed by the Kronecker product of k smaller matrices. By doing so, our model significantly reduces the

computational complexity to O(kN3/k). Furthermore, our model is general in nature and can be adapted to different regularization based subspace clustering

methods. Experimental results on two public datasets show that our model significantly improves the efficiency compared with several state-of-the-art

methods. Moreover, we have conducted experiments on synthetic data to verify the scalability of our model for large scale datasets.

We first introduce the Kronecker product. Let 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑝×𝑞,
the Kronecker product of matrices 𝐴 and 𝐵 is 𝐴⊗ 𝐵 ∈ ℝ𝑚𝑝×𝑛𝑞 which
is defined as:

Fig.1 Left: Three 1D subspaces in ℝ2 with normalized data points. Right: The

solutions of conventional sparse subspace clustering method (upper) and our

Kronecker product based model (lower). As shown, the space and computational

complexity of our model achieve significant reduction compared with conventional

method.

We have presented a fast subspace clustering model based on the

Kronecker product. Due to the property that the Kronecker product of a

block diagonal matrix and any other matrix is still a block diagonal matrix,

we learn the representation matrix of spectral clustering using the Kronecker

product of a set of smaller matrices. Thanks to the superiority of the

Kronecker product in reducing the computational complexity of matrix

operations, the memory space and computational complexity of our methods

achieve significant efficiency gain compared with several baseline

approaches (SSC, LRR, TRR, and NVR3).

We have conducted three sets of experiments on both real and synthetic

datasets to verify the effectiveness of the proposed methods.

Abstract

Method Experiments

Conclusion

Table 1. The subspace clustering performance on the CMU PIE dataset.

Table 2. The subspace clustering performance on the MNIST dataset.

1. Motivation

2. Formulation

We assume that the self-representation matrix is formed by the

Kronecker product of two smaller matrices 𝐶1 and 𝐶2. Here we use the
important property that the Kronecker product of a block diagonal
matrix with any other matrix is still a block diagonal matrix (as
shown in Fig. 1). The optimization problem can be written as:

3. Optimization

We solve the optimization problem by updating each small matrix at a

time, while keeping the other one fixed. Considering updating 𝐶1, while 𝐶2
is fixed, we start by rewriting

since 𝑋 𝐹
2 is a constant, let

then, the problem is equivalent to minimizing 𝛷. This can be transformed

into a ridge regression problem which has optimal solution. We can solve 𝐶2
in a similar manner to 𝐶1, when 𝐶1 is fixed. The computational complexity

for this solution is O(2N3/2).

When the number of small matrices is k, we can also solve it by

updating one small matrix at a time, while keeping the remaining matrices

fixed. In this situation, the problem is the same as k = 2 solved above. The

computational complexity of the whole optimization is O(kN3/k).

Table 3. The subspace clustering performance on the synthetic dataset.

Table 4. The average running time and clustering 

accuracy of our methods with different k.

Fig.2 The average clustering accuracy 

with different balance parameter 𝜆.


