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Abstract

Subspace clustering Is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller
than the ambient dimension. Spectral clustering, as one of the main approaches to subspace clustering, often takes on a sparse representation or a low-rank
representation to learn a block diagonal self-representation matrix for subspace generation. However, existing methods require solving a large scale convex
optimization problem with a large set of data, with computational complexity reaches O(N?) for N data points. Therefore, the efficiency and scalability of
traditional spectral clustering methods can not be guaranteed for large scale datasets. In this paper, we propose a subspace clustering model based on the
Kronecker product. Due to the property that the Kronecker product of a block diagonal matrix with any other matrix is still a block diagonal matrix, we can
efficiently learn the representation matrix which is formed by the Kronecker product of k smaller matrices. By doing so, our model significantly reduces the
computational complexity to O(kN3¥%). Furthermore, our model is general in nature and can be adapted to different regularization based subspace clustering
methods. Experimental results on two public datasets show that our model significantly improves the efficiency compared with several state-of-the-art
methods. Moreover, we have conducted experiments on synthetic data to verify the scalability of our model for large scale datasets.

Method

1. Motivation
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Fig.1 Left: Three 1D subspaces in R? with normalized data points. Right: The
solutions of conventional sparse subspace clustering method (upper) and our
Kronecker product based model (lower). As shown, the space and computational
complexity of our model achieve significant reduction compared with conventional
method.

2. Formulation

We first introduce the Kronecker product. Let A € R™*" B € RP*9,
the Kronecker product of matrices A and B is A ® B € R"P*"™? which

is defined as:
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We assume that the self-representation matrix Is formed by the
Kronecker product of two smaller matrices C; and C,. Here we use the
important property that the Kronecker product of a block diagonal
matrix with any other matrix is still a block diagonal matrix (as
shown in Fig. 1). The optimization problem can be written as:

X — X(C1 @ C)||2 + MGy @ Ca|%
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3. Optimization

We solve the optimization problem by updating each small matrix at a
time, while keeping the other one fixed. Considering updating C;, while C,
IS fixed, we start by rewriting

|X — X (C1 @ C)llF
=tr((X — X(Cy ® C3))" (X — X(Cy ® C3)))
=|| X |3 — 2tr(X(C, ® C2)XT)
+1r(X(C ® Co)(X(C1 @ Ca))T)
since || X||% is a constant, let

b = —2tr(X(C10C) X" )+tr(X(C1®@Cs)(X (C1@C2))")

then, the problem is equivalent to minimizing @. This can be transformed
Into a ridge regression problem which has optimal solution. We can solve C,
In a similar manner to C;, when C; Is fixed. The computational complexity
for this solution is O(2N?%/?2).

When the number of small matrices Is k, we can also solve it by
updating one small matrix at a time, while keeping the remaining matrices
fixed. In this situation, the problem is the same as k = 2 solved above. The
computational complexity of the whole optimization is O(kN3X).

Experiments

We have conducted three sets of experiments on both real and synthetic
datasets to verify the effectiveness of the proposed methods.

Table 1. The subspace clustering performance on the CMU PIE dataset.

No. Objects 5 Objects [0 Objects 20 Objects 40 Objects 60 Objects
I Time Acc. Time Acc. Time Acc. Time Acc. Time Acc.
SSC 243.6 | 92.47 [182 80.25 3618 84.31 14502 82.37 - -

KrSSC 12.7 01.28 26.8 88.27 61.4 83.86 150.2 81.75 | 274.3 | 79.48
LRR 216.4 | 9453 852.5 92.14 2743 89.21 11463 85.47 - -
KrLRR 9.7 02.51 20.4 90.72 57.2 88.13 145.8 85.21 254.8 83.65
TRR 152.7 | 97.35 548.2 96.035 2167 04.54 8427 91.74 - -
KrTRR 7.5 05.21 18.3 94.52 52.8 03.84 143.5 90.23 | 260.1 87.26
NVR3 190.5 | 98.51 624.6 | 97.51 2536 | 95.75 [1826 | 93.15 - -
KrNVR3 11.3 97.14 25.7 96.26 72.4 03.96 180.4 91.57 | 312.5 89.15

Table 2. The subspace clustering performance on the MNIST dataset.

No. Points | 500 | 1000 | 10000 | 30000 ‘ 70000

Time Acc. Time Acc. Time Acc. Time Acc. Time Acc.

SSC 152.4 | 83.36 | 638.2 82.45 - - - - - -
KrSSC 7.3 81.25 18.7 81.17 1924 | 79.42 | 411.5 | 76.15 683.2 | 73.34

LRR 145.5 85.75 614.8 85.14 - - - - - -
KrLRR 7.1 83.24 16.4 83.20 160.8 81.52 | 384.5 | 79.21 641.5 | 76.53

TRR [13.2 | 90.28 476.4 | 89.78 - - - - - -
KrTRR 6.5 88.95 15.8 88.65 168.2 85.76 | 403.8 83.26 | 795.6 81.53

NVR3 [18.5 | 91.85 531.1 91.28 - - - - - -
KrNVR3 8.3 90.08 22.5 90.14 | 243.6 86.27 | 627.5 83.87 0968.4 82.41

Table 3. The subspace clustering

performance on the synthetic dataset.

No. Points | 500 | 5000 | 10000 | 50000 | 100000
Time Acc. Time Acc. Time Acc. Time Acc. Time Acc.
SSC 1354 | 94.15 1824 | 93.86 5413 91.05 - - - -
KrSSC 6.2 902.12 | 534 | 91.18 | 164.2 | 89.73 | 231.5 | 85.04 | 285.7 | 8I1.85
LRR [18.6 | 95.27 1645 | 94.57 4853 92.14 - - - -
KrLRR 6.0 3.24 | 49.3 | 92.21 | 152.7 | 89.49 | 216.2 | 86.03 | 274.3 | 82.20
TRR 89.5 98.85 1627 | 97.15 3825 95.69 - - - -
KrTRR 5.9 08.06 | 46.7 | 96.53 | 185.3 | 95.05 | 250.3 | 93.16 | 314.2 | 89.06
NVR3 96.4 99.91 1752 | 98.61 6024 97.10 - - - -
KrNVR3 6.0 99.07 | 52.8 | 98.11 | 207.5 | 96.24 | 260.1 | 93.89 | 321.5 | 90.62
100
Table 4. The average running time and clustering
accuracy of our methods with different k.
k 2 3 4 5 :
average running time (seconds): S
KrSSC 715.6  285.7 61.2 25.4 £
KrLRR 682.5 2743 52.7 20.6 %
KrTRR 755.1  314.2 84.3 31.5 O ol e
KiNVR3 | 7943  321.5 91.6 36.2 —KILRR
average clustering accuracy: 20 BV
KISSC 8314 8185 ?542 6?25 100 Uj1 Uf2 UI.3 UI.4 Dj5 DjB Dj? DjB Ofg 1.0
KrLRR 84.43  82.20 T77.16  68.17 The balance parameter
KrTRR 90.75 89.06 84.27 7341 : :
KNVRZ | 9254 0062 8534 7504 Fig.2 The average clustering accuracy

with different balance parameter A.

Conclusion

We have presented a fast subspace clustering model based on the
Kronecker product. Due to the property that the Kronecker product of a
block diagonal matrix and any other matrix is still a block diagonal matrix,

we learn the representation matrix of spectral clustering using the Kronecker
product of a set of smaller matrices. Thanks to the superiority of the
Kronecker product in reducing the computational complexity of matrix
operations, the memory space and computational complexity of our methods

achieve significant efficiency gain compared with several baseline

approaches (SSC, LRR, TRR, and NVR3).



