Residual Fractal Network for Single Image Super Resolution by Widening and Deepening

Jiahang Gu, Zhaowei Qu, Xiaoru Wang, Jiawang Dan and Junwei Sun Beijing Key Laboratory of Network System and Network Culture, Beijing University of Posts and Telecommunications {gujiahang, zwqu, wxr, flydan, junweisun}@bupt.edu.cn

The repetitive texture features in the image play an important role in the super-resolution reconstruction process, which are usually ignored by most recent method. In response to this problem, we propose a residual fractal structure to increase the representation ability of the network on key internal features.

Basic Module

We design the residual fractal structure as a

Quantitative Results by PSNR/SSIM

The comparison results for $\times 3$ with BI(left) and BD(right) on five standard benchmark datasets are shown in the figure below. Our RFNs+ outperform other compared methods on all the datasets. Without self-ensemble, RFNs obtain better performance in most datasets. The results of experiments show that multi-branch structure in RFCB can effectively extract recurring texture feature and utilize the autocorrelation of images. In addition, the width and depth of the network are both important factors to improve performance.

Method	Scale	Set5	Set14	B100	Urban100	Manga109			0.45	0.414	D100	11.1 100	100
		PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	Method	Scale	Sets	Set14	B100	Urban100	Manga109
The 1 -		1011000101	000000000000000000000000000000000000000	1014000101	1011000101	1011000101	meanog	Deane	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
BICUDIC		30.39/0.8682	27.55/0.7742	27.21/0.7385	24.46/0.7349	26.95/0.8556	Bicubic	3	28 78/0 8308	26 38/0 7271	26 33/0 6918	23 52/0 6862	25 46/0 8149
SRCNN	3	32.75/0.9090	29.30/0.8215	28.41/0.7863	26.24/0.7989	30.48/0.9117	CDMCD	20	20.70/0.0001	20.00/0.02/1	20.00/0.0710	05 0 A IO 705 C	20.400.0002
ESRCNN	3	33.18/0.9140	29.37/0.8240	28.53/0.7910	26.43/0.8080	31.10/0.9210	SEMSK	3	52.21/0.9001	28.89/0.8105	28.15/0.7740	23.84/0.7830	29.04/0.9005
VIDCD	2	22 67/0 0210	20.78/0.8220	28 82/0 7000	27 14/0 8200	22.01/0.0240	SRCNN	3	32.05/0.8944	28.80/0.8074	28.13/0.7736	25.70/0.7770	29.47/0.8924
VDSK	2	35.0770.9210	29.76/0.6520	20.03/0.7990	27.14/0.0290	32.01/0.9340	FSRCNN	3	26.23/0.8124	24.44/0.7106	24.86/0.6832	22.04/0.6745	23.04/0.7927
LapSKN	3	33.82/0.9227	29.87/0.8320	28.82/0.7980	27.07/0.8280	32.21/0.9350	VDSR	3	33 25/0 9150	29 46/0 8244	28 57/0 7893	26.61/0.8136	31.06/0.9234
MemNet	3	34.09/0.9248	30.01/0.8350	28.96/0.8001	27.56/0.8376	32.51/0.9369	IDCNIN	2	22 28/0 0192	20.62/0.0201	20.5110.1025	26.01/0.0150	21 15/0 0245
EDSR	3	34.65/0.9280	30.52/0.8462	29.25/0.8093	28.80/0.8653	34.17/0.9476	IKCININ	2	33.36/0.9162	29.05/0.8281	28.05/0.7922	20.77/0.81.54	51.15/0.9245
MCDN	2	24 28/0 0262	20 24/0 8205	20.09/0.9041	28 08/0 8554	22 44/0 0427	SRMD	- 3	34.01/0.9242	30.11/0.8364	28.98/0.8009	27.50/0.8370	32.9//0.9391
DDD		34.30/0.9202	30.34/0.0393	29.00/0.0041	20.00/0.0004	33.44/0.942/	RDN	3	34.58/0.9280	30.53/0.8447	29.23/0.8079	28.46/0.8582	33.97/0.9465
RDN		34.71/0.9296	30.5770.8468	29.26/0.8093	28.80/0.8653	34.13/0.9484	RCAN	3	34 70/0 9288	30 63/0 8462	29 32/0 8093	28 81/0 8645	34 38/0 9483
RCAN	3	34.74/0.9299	30.64/0.8481	29.32/0.8111	29.08/0.8702	34.43/0.9498	CAN	2	24 75/0 0200	20 69/0 9466	20 22/0 9101	20.02/0.0646	24 46/0 0497
SAN	3	34.75/0.9300	30.59/0.8476	29.33/0.8112	28.93/0.8671	34.30/0.9494	SAIN	2	34.73/0.9290	30.06/0.6400	29.33/0.8101	20.03/0.0040	34.40/0.9467
DREN	3	34 73/0 0301	30 64/0 8482	20 32/0 8108	28 00/0 8600	34 45/0 0407	DRFN	- 3	34.73/0.9295	30.68/0.8487	29.34/0.8108	28.91/0.8665	34.58/0.9494
DDDD		24.05/0.9301	20.75/0.0402	29.32/0.0100	20.3370.0030	34.43/0.242/	DRFN+	3	34.87/0.9302	30.79/0.8487	29.39/0.8117	29.10/0.8691	34.85/0.9506
DKFN+	- 5	34.85/0.9307	30.75/0.8495	29.36/0.8117	<u>29.19</u> /0.8/19	34.72/0.9510	WRFN	3	34.77/0.9297	30.69/0.8473	29.35/0.8106	28.97/0.8665	34.63/0.9496
WRFN	3	<u>34.77/0.9303</u>	30.66/0.8483	29.33/0.8110	29.06/0.8694	34.45/0.9498	WDEN	2	24 84/0 0201	20 79/0 9/94	20 20/0 8112	20 13/0 9699	24 84/0 0507
WRFN+	3	34.85/0.9307	30.73/0.8491	29.37/0.8118	29.22/ <u>0.8715</u>	34.67/0.9509	WKFINT	3	34.04/0.9301	30.70/0.0404	27.39/0.0113	<u>47.13/0.0000</u>	34.04/0.9307

multi-branch convolution module. The difference of receptive field between adjacent branches is doubled. In the inter-branch fusion stage, 1x1 convolution is used to extract the features that appear in different branches as key features and participate in the final reconstruction stage. The difference with MSRN and RDN's multiscale structure is shown in the figure below.

Network Architecture

WRFN We use the recursive characteristics of RFCB to increase the number of branches Results With BI Degradation Model

Results With BD Degradation Model

Visual Quality and Model Size Analyses

In order to compare the capabilities of extracting multi-scale features fairly, we only compare the results with MSRN and RDN. The visual comparisons are shown in the figure below. It can be seen that DRFN can restore sharper texture in the image while others suffer from blurring artifacts.

Visual comparison for $\times 2$ SR with BI model on Set14 dataset. comparisons of WRFN previous methods are shown The and in the folvisual figures, lowing models which compared from we can see most cannot reconaccurately and suffer blurring from serious artifacts. struct texture In con-

to 7 to get WRFN, and reduce the difficulty of training through local and global skip connection. The structure with more branches can extract and integrate more levels of features, which is also a way of broadening the network. **DRFN** In order to compare the effectiveness of the multi-scale structure, we also designed DRFN with reference to the network structure of MSRN and RDN. DRFN stacks multiple RFCBs, and merges the convolution outputs of different depths together to participate reconstruction through the gate unit. in

References [1] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu

- Residual dense network for image super-resolution, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2472–2481.
- [2] J. Li, F. Fang, K. Mei, and G. Zhang Multi-scale residual network for image super-resolution. in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 517–532.
- [3] G. Larsson, M. Maire, and G. Shakhnarovich Fractalnet: Ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648,2016.

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant 61672108 and Grant 61976025.

ure right. Compared with RCAN and SAN, our RFN has fewer parameters, while achieves better performance, especially the amount of parameters of WRFN is reduced by 30%. Compared with RDN and EDSR, the amount of RFNs' parameters is significantly reduced while the performance is greatly improved, which means RFNs achieve a better trade-off between the amount of parameters and performance. The better performance of WRFN and DRFN further verifies the effectiveness of RFCB and deepening and widening the network are both effective ways to improve performance.

Comparison of model size and performance. Results are evaluated on Set5 $(2\times)$