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Problem

The repetitive texture features in the image play
an important role in the super-resolution recon-
struction process, which are usually ignored by
most recent method. In response to this prob-
lem, we propose a residual fractal structure to

Quantitative Results by PSNR /SSI

The comparison results for x3 with BI(left) and BD(right) on five standard benchmark datasets are
shown in the figure below. Our RFNs+ outperform other compared methods on all the datasets.
Without self-ensemble, RFNs obtain better performance in most datasets. The results of experiments
show that multi-branch structure in RFCB can effectively extract recurring texture feature and utilize
the autocorrelation of images. In addition, the width and depth of the network are both important

increase the representation

ability of the net-

work on key internal features.

Basic Module

We design the residual fractal structure as a

multi-branch convolution module.

The differ-

ence of receptive field between adjacent branches

factors to improve performance.

is doubled. In the inter-branch fusion stage, 1x1
convolution is used to extract the features that
appear in different branches as key features and
participate in the final reconstruction stage.

The difference with MSRN and RDN'’s multi-
scale structure is shown in the figure below.
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Network Architec

WRFN We use the recursive characteristics
of RFCB to increase the number of branches
to 7 to get WRFN, and reduce the difficulty
of training through local and global skip con-
nection. The structure with more branches can
extract and integrate more levels of features,
which is also a way of broadening the network.
DRFN In order to compare the eflfectiveness
of the multi-scale structure, we also designed
DRFN with reference to the network structure
of MSRN and RDN. DRFN stacks multiple
RFCBs, and merges the convolution outputs
of different depths together to participate

in reconstruction through the gate unit.
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Results With BD Degradation Model

Results With BI Degradation Model

Visual Quality and Model Size Anal

In order to compare the capabilities of extracting multi-scale features fairly, we only compare the
results with MSRN and RDN. The visual comparisons are shown in the figure below. It can be
seen that DRF'N can restore sharper texture in the image while others suffer from blurring artifacts.
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Visual comparison for x2 SR with BI model on Set1l4 dataset.

The wvisual comparisons of WRFN and previous methods are shown in the {fol-
lowing figures, from which we can see most compared models cannot recon-
struct texture accurately and suffer {from serious blurring artifacts. In con-
trast, WRFN obtains sharper texture and restores more high-frequency details.
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The model size and performance are shown in fig- .25 o ® 8 ReAN
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ness of RFCB and deepening and widening the
network are both effective ways to improve per-
formance.
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Comparison of model size and performance.
Results are evaluated on Seth (2x)




