
Wasserstein k-means with sparse simplex projection
Takumi Fukunaga (Waseda University, Japan) and Hiroyuki Kasai (Waseda University, Japan)

Problem of interest
• Focuses on Wasserstein k-means
• Necessary to solve optimal transport as the

subproblem of this problem
Wp(µ, ν) = min

T∈Umn

⟨T, C⟩ = ⟨T, C⟩

Umn = {T ∈ Rm×n
+ : T1n = a, TT1m = b}

• µ, ν are emphirical probaility distributions.
• C is the ground cost matrix.

• Takes high computational costs to solve it
• O(n3 log(n))

• Various applications
• e.g., machine learning, color transfer.

Contributions
• Propose Sparse simplex projection Wasserstein

k-means (SSPW k-means).
• Numerical evaluations demonstrate the

effectiveness in two follwings points
• Reducing the complexities of Wasserstein Distance
• Maintaining the clustering quality before sparsifying

and shrinking

Clustering algorithm [1,2]

• One of popular algorithms is k-means method.
• Consists of two following steps

si = arg min
j=1,...,k

d(xi, cj), ∀i ∈ [q]

cj = barycenter({x|si = j}), ∀j ∈ [k]

• Former assignment step causes high computational cost.
• Call it Wasserstein k-means when adopting

Wasserstein distance and barycenter

Optimal Transport [3,4]

• Minimizes the total transport costs.
• The optimum solution gives the Wasserstein

distance.
• Wasserstein barycenter is defined as

g(µ) = 1
n

∑
i

Wp(µ, νi)

• From the formula and the domain, optimal transport is
solved by linear programming (LP).

• Linear programming is difficult to solve because of the
high computational complexities.

Sparse Simplex Projection

• Sparse simplex projection (GSHP) [5]

β̂ = Projγ(t)(β) =
 β̂|S⋆ = P∆κ

(β|S⋆)
β̂|(S⋆)c = 0

• S is the subset of N = {1, 2, . . . , n}.
• a|S extracts the elements of S in a.
• κ = ⌊n · γ(t)⌋.
• S∗ = supp(Pκ(β)).
• The v-th element of P∆κ

(β|S⋆) is defined as
(P∆κ

(β|S∗))v = [(β|S∗)v + τ ]+
where τ is

τ := 1
κ

(1 +
|S∗|∑

β|S∗).

• Computational complexities is
O(n min(κ, log(n)))

Shrinking operations according to
zero elements

• Vector shrinking operator
ν̃i = shrink(ν̂i) = (ν̂i)|Ssamp ∈ R|Ssamp|

c̃i = shrink(ĉi) = (ĉi)|Scent ∈ R|Scent|

• Vector shrinking operator removes zero elements from the
projected sample ν̂i and centroid ĉi and generates ν̃i and
c̃i respectively.

• Matrix shrinking operator
C̃ = Shrink(Cνc)

= Csupp(ν̃ i),supp(c̃i) ∈ R|Ssamp|×|Scent|.

• Shrink the elements of the ground cost matrix, of which
correspond to the removed vectors.

• Produce no degradations because zero elements
don’t have effect on transport matrix.

Figure 1: Example of shrinking operation.

Sparse simplex projection Wasserstein
k-means (SSPW k-means)(Alg.1)

Require: data {ν1,. . . ,νq}, cluster number k ∈N, ground
cost matrix C ∈ Rn×n, maximum iteration number
Tmax, γmin.

1: Initialize centroids {c̃1, . . . , c̃k}, set t = 1.
2: repeat
3: Update sparsity ratio γ(t).
4: Project νi to ν̂i on sparse simplex ∆p:

ν̂i = Projγ(t)(νi) ∀i ∈ [q].
5: Shrink ν̂i into ν̃i: ν̃i = shrink(ν̂i).
6: Project cj into ĉj on sparse simplex ∆p:

ĉj = Projγ(cj) ∀j ∈ [k].
7: Shrink ĉj into c̃j: c̃j = shrink(ĉj).
8: Shrink ground cost matrix C into C̃: C̃ = Shrink(C)
9: Find closest centroids (assignment step):

si = argminj=1,...,k Wp(ν̃i, c̃j), ∀i ∈ [q].
10: Update centroids (update step):

cj = barycenter({ν|si = j}), ∀j ∈ [k].
11: until cluster centroids stop changing. StateUpdate the

iteration number t as t = t + 1.
Ensure: cluster centers {c1, . . . , ck}.

Control parameter of sparse ratios

• Three γ(t) control algorithms:

γ(t) :=



γmin (FIX)

1 − (1 − γmin)
Tmax

t (DEC)

γmin + (1 − γmin)
Tmax

t (INC),

• Denoted as ‘FIX’ (fixed), ‘DEC’ (decrease), and
‘INC’(increase).

• γmin ∈ R is the minimum value.
• Tmax ∈ N is the maximum number os the iterations.
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Numerical evaluations
A. Clustering performance

(a) Purity (b) NMI

(c) Accuracy (d) Computation time

Figure 2: Clustering performance results of 2-D histogram data
(USPS dataset).

B. Convergence performance

Figure 3: Left: Convergence performance with different pro-
jection data using DEC algorithm of γmin = 0.5. Right: Con-
vergence performance comparison of different algorithm of γ(t)
of γmin = 0.5.

C. Comparison on different sparsity

Figure 4: Performance comparison on different ratios (USPS
dataset).
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