Wasserstein k-means with sparse simplex projection

Takumi Fukunaga (Waseda University, Japan) and Hiroyuki Kasai (Waseda University, Japan)

Problem of interest

- Focuses on Wasserstein k-means
- Necessary to solve optimal transport as the subproblem of this problem

$$\mathcal{W}_p(oldsymbol{\mu},oldsymbol{
u}) = \min_{\mathbf{T} \in \mathcal{U}_{mn}} \langle \mathbf{T}, \mathbf{C}
angle = \langle \mathbf{T}, \mathbf{C}
angle$$

$$\mathcal{U}_{mn} = \{\mathbf{T} \in \mathbb{R}_{+}^{m imes n} : \mathbf{T}\mathbf{1}_n = oldsymbol{a}, \mathbf{T}^T\mathbf{1}_m = oldsymbol{b}\}$$

- $\bullet \mu, \nu$ are emphirical probability distributions.
- C is the ground cost matrix.
- Takes high computational costs to solve it
- $ullet \mathcal{O}(n^3 \log(n))$
- Various applications
- e.g., machine learning, color transfer.

Contributions

- Propose Sparse simplex projection Wasserstein k-means (SSPW k-means).
- Numerical evaluations demonstrate the effectiveness in two follwings points
- Reducing the complexities of Wasserstein Distance
- Maintaining the clustering quality before sparsifying and shrinking

Clustering algorithm [1,2]

- One of popular algorithms is k-means method.
- Consists of two following steps

$$s_i = \underset{j=1,...,k}{\arg \min} d(\boldsymbol{x}_i, \boldsymbol{c}_j), \forall i \in [q]$$

 $\boldsymbol{c}_j = \underset{j=1,...,k}{\arg \min} d(\boldsymbol{x}_i, \boldsymbol{c}_j), \forall j \in [k]$

- Former assignment step causes high computational cost.
- \bullet Call it Wasserstein k-means when adopting Wasserstein distance and barycenter

Optimal Transport [3,4]

- Minimizes the total transport costs.
- The optimum solution gives the Wasserstein distance.
- Wasserstein barycenter is defined as

$$g(\boldsymbol{\mu}) = \frac{1}{n} \sum_{i} W_p(\boldsymbol{\mu}, \boldsymbol{\nu}_i)$$

- From the formula and the domain, optimal transport is solved by linear programming (LP).
- Linear programming is difficult to solve because of the high computational complexities.

Sparse Simplex Projection

• Sparse simplex projection (GSHP) [5]

$$\hat{\boldsymbol{\beta}} = \operatorname{Proj}^{\gamma(t)}(\boldsymbol{\beta}) = \begin{cases} \hat{\boldsymbol{\beta}}_{|\mathcal{S}^{\star}} = \mathcal{P}_{\Delta_{\kappa}}(\boldsymbol{\beta}_{|\mathcal{S}^{\star}}) \\ \hat{\boldsymbol{\beta}}_{|(\mathcal{S}^{\star})^{c}} = 0 \end{cases}$$

- \mathcal{S} is the subset of $\mathcal{N} = \{1, 2, \dots, n\}$.
- $a_{|\mathcal{S}}$ extracts the elements of \mathcal{S} in a.
- $\bullet \kappa = |n \cdot \gamma(t)|.$
- $S^* = \operatorname{supp}(\mathcal{P}_{\kappa}(\boldsymbol{\beta})).$
- The v-th element of $\mathcal{P}_{\Delta_{\kappa}}(\boldsymbol{\beta}_{|\mathcal{S}^{\star}})$ is defined as

$$(\mathcal{P}_{\Delta_{\kappa}}(\boldsymbol{\beta}_{|\mathcal{S}^*}))_v = [(\boldsymbol{\beta}_{|\mathcal{S}^*})_v + \tau]_+$$

where τ is

$$\tau := \frac{1}{\kappa} (1 + \sum_{k=1}^{|\mathcal{S}^*|} \boldsymbol{\beta}_{|\mathcal{S}^*|}).$$

• Computational complexities is $\mathcal{O}(n\min(\kappa,\log(n)))$

Shrinking operations according to zero elements

Vector shrinking operator

$$\tilde{\boldsymbol{v}}_i = \operatorname{shrink}(\hat{\boldsymbol{v}}_i) = (\hat{\boldsymbol{v}}_i)_{|\mathcal{S}_{\operatorname{samp}}} \in \mathbb{R}^{|\mathcal{S}_{\operatorname{samp}}|}$$

$$\tilde{\boldsymbol{c}}_i = \operatorname{shrink}(\hat{\boldsymbol{c}}_i) = (\hat{\boldsymbol{c}}_i)_{|\mathcal{S}_{\operatorname{cent}}} \in \mathbb{R}^{|\mathcal{S}_{\operatorname{cent}}|}$$

- Vector shrinking operator removes zero elements from the projected sample $\hat{\boldsymbol{\nu}}_i$ and centroid $\hat{\boldsymbol{c}}_i$ and generates $\tilde{\boldsymbol{\nu}}_i$ and $\tilde{\boldsymbol{c}}_i$ respectively.
- Matrix shrinking operator

$$\tilde{\mathbf{C}} = \mathrm{Shrink}(\mathbf{C}_{\boldsymbol{\nu}\boldsymbol{c}})$$

$$= \mathbf{C}_{\mathrm{supp}(\tilde{\boldsymbol{\nu}}_i),\mathrm{supp}(\tilde{\boldsymbol{c}}_i)} \in \mathbb{R}^{|\mathcal{S}_{\mathrm{samp}}| \times |\mathcal{S}_{\mathrm{cent}}|}.$$

- Shrink the elements of the ground cost matrix, of which correspond to the removed vectors.
- Produce no degradations because zero elements don't have effect on transport matrix.

Figure 1: Example of shrinking operation.

Sparse simplex projection Wasserstein k-means (SSPW k-means)(Alg.1)

Require: data $\{\nu_1, \ldots, \nu_q\}$, cluster number $k \in \mathbb{N}$, ground cost matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$, maximum iteration number $T_{\text{max}}, \gamma_{\text{min}}$.

- 1: Initialize centroids $\{\tilde{\boldsymbol{c}}_1,\ldots,\tilde{\boldsymbol{c}}_k\}$, set t=1.
- 2: repeat
- 3: Update sparsity ratio $\gamma(t)$.
- 4: Project $\boldsymbol{\nu}_i$ to $\hat{\boldsymbol{\nu}}_i$ on sparse simplex Δ_p : $\hat{\boldsymbol{\nu}}_i = \operatorname{Proj}^{\gamma(t)}(\boldsymbol{\nu}_i) \ \forall i \in [q].$
- 5: Shrink $\hat{\boldsymbol{\nu}}_i$ into $\tilde{\boldsymbol{\nu}}_i$: $\tilde{\boldsymbol{\nu}}_i = \operatorname{shrink}(\hat{\boldsymbol{\nu}}_i)$.
- 6: Project \boldsymbol{c}_j into $\hat{\boldsymbol{c}}_j$ on sparse simplex Δ_p : $\hat{\boldsymbol{c}}_j = \operatorname{Proj}^{\gamma}(\boldsymbol{c}_j) \ \forall j \in [k].$
- 7: Shrink $\hat{\boldsymbol{c}}_j$ into $\tilde{\boldsymbol{c}}_j$: $\tilde{\boldsymbol{c}}_j = \operatorname{shrink}(\hat{\boldsymbol{c}}_j)$.
- 8: Shrink ground cost matrix \mathbf{C} into \mathbf{C} : $\mathbf{C} = \mathrm{Shrink}(\mathbf{C})$
- 9: Find closest centroids (assignment step): $s_i = \operatorname{argmin}_{j=1,\dots,k} W_p(\tilde{\boldsymbol{\nu}}_i, \tilde{\boldsymbol{c}}_j), \forall i \in [q].$
- 10: Update centroids (update step): $\mathbf{c}_j = \text{barycenter}(\{\boldsymbol{\nu}|s_i=j\}), \forall j \in [k].$
- 11: **until** cluster centroids stop changing. StateUpdate the iteration number t as t = t + 1.

Ensure: cluster centers $\{c_1, \ldots, c_k\}$.

Control parameter of sparse ratios

• Three $\gamma(t)$ control algorithms:

$$\gamma(t) := egin{cases} \gamma_{\min} & (\text{FIX}) \ 1 - \dfrac{(1 - \gamma_{\min})}{T_{\max}} t & (\text{DEC}) \ \gamma_{\min} + \dfrac{(1 - \gamma_{\min})}{T_{\max}} t & (\text{INC}), \end{cases}$$

- Denoted as 'FIX' (fixed), 'DEC' (decrease), and 'INC' (increase).
- $\gamma_{\min} \in \mathbb{R}$ is the minimum value.
- $T_{\text{max}} \in \mathbb{N}$ is the maximum number os the iterations.

References

- [1] Lloyd, S., Least squares quantization in pcm, IEEE Trans. Inf. Theory, 28(2):129-137,1982.
- [2] Ye, Y., Wu, P., Wang, J. Z., and Li, J., Fast discrete distribution clustering using Wasserstein barycenter with sparse support, IEEE Trans. Signal Process, 65(9):2317-2332, 2017.
- [3] Peyre, G. and Cuturi, M., Computational optimal transport, Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019.
- [4] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., and Peyr'e, G., Iterative bregman projections for regularized transportation problems, SIAM Journal on Scientific Computing,, 37(2):1111-A1138, 2015
- [5] Kyrillidis, A., Becker, S., Cevher, V., and Koch, C., Sparse projections onto the simplex, In ICML, 2013.

Numerical evaluations

A. Clustering performance

Figure 2: Clustering performance results of 2-D histogram data (USPS dataset).

B. Convergence performance

Figure 3: Left: Convergence performance with different projection data using DEC algorithm of $\gamma_{\min} = 0.5$. Right: Convergence performance comparison of different algorithm of $\gamma(t)$ of $\gamma_{\min} = 0.5$.

C. Comparison on different sparsity

Figure 4: Performance comparison on different ratios (USPS dataset).