Problem of interest

e Focuses on Wasserstein k-means

e Necessary to solve optimal transport as the
subproblem of this problem

Wy(,v) = min (T, C) = (T, C)

Upp ={T € R T1, =a,T'1,, = b}

e 11, v are emphirical probaility distributions.
e C is the ground cost matrix.

e Takes high computational costs to solve it
* O(n’log(n))

e Various applications
¢ c.¢.. machine learning, color transfer.

Contributions

e Propose Sparse simplex projection Wasserstein

k-means (SSPW k-means).

e Numerical evaluations demonstrate the
effectiveness in two follwings points
e Reducing the complexities of Wasserstein Distance
e Maintaining the clustering quality before sparsitying
and shrinking

Clustering algorithm |[1,2]

e One of popular algorithms is A-means method.
e Consists of two following steps
s; = arg mind(x;, ¢;), Vi € [q]

j=1,...k
barycenter({x|s; = j}),Vj € |k

Cj

e Former assignment step causes high computational cost.

e Call it Wasserstein k-means when adopting
Wasserstein distance and barycenter

Optimal Transport [3,4]

e Minimizes the total transport costs.

e 'The optimum solution gives the Wasserstein
distance.

e Wasserstein barycenter is defined as
1
() = — X Wy, )

e [From the formula and the domain, optimal transport is
solved by linear programming (LP).

e Linear programming is difficult to solve because of the
high computational complexities.

Sparse Simplex Projection

e Sparse simplex projection (GSHP) |5
s = Pa(Bs)

(&%)

f A

B = Proj"(8) = <\g

o S is the subset of N = {1,2,...,n}.

® a5 extracts the elements of § in a.
°r=|n-v(t)].

5" = Supp(Pﬁ(,B)).
® The v-th element of P (B)s.) is defined as

(PAK(IBB*))U — K/B|8*)v + 7]y
IS

e Computational complexities is

O(nmin(k,log(n)))

where 7 1S

Shrinking operations according to
zero elements

e Vector shrinking operator
D, = shrink(;) = (0,);s,, € RIS
¢; = shrink(¢;) = (&);s,,, € RISt
e Vector shrinking operator removes zero elements from the

projected sample ©; and centroid ¢; and generates v; and
c; respectively.

e Matrix shrinking operator

~S

C = Shfiﬂk(Cyc)

S - ~ |Ssamp’ X |Scent|
o CSUPP(Vi),SUPP(Cz') S '

e Shrink the elements of the ground cost matrix, of which
correspond to the removed vectors.

e Produce no degradations because zero elements
don’t have effect on transport matrix.

supp(a) = {2,3,5,6}
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Figure 1: Example of shrinking operation.
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Sparse simplex projection Wasserstein
k-means (SSPW k-means)(Alg.1)

Require: data {vy,...,v,}, cluster number k€N, ground
cost matrix C € R™*" maximum iteration number
Tmam “Ymin-

1: Initialize centroids {¢;y,..., ¢}, set t = 1.
2: repeat

3. Update sparsity ratio y(t).

4. Project v; to ©; on sparse simplex Ay

; = Proj""(v,) Yi € [q].
Shrink I/)z Into I)Z I}z — Shflﬂk(ﬁz)
Project ¢; into ¢; on sparse simplex A
éj = PFOJW(C]') \V/] - []C]
Shrink ¢; into ¢;: ¢; = shrink(¢;).
Shrink ground cost matrix C into C: C = Shrink(C)
9: Find closest centroids (assignment step):
s; = argmin,_, . Wy(v;, €;),Vi € [q].
10: Update centroids (update step):
c; = barycenter({v|s; = j}),Vj € [k].
11: until cluster centroids stop changing. StateUpdate the
iteration number t ast =t + 1.
Ensure: cluster centers {cy, ..., ci}.

Control parameter of sparse ratios

e Three () control algorithms:

 Vinin ( | (FIX)
1 — "Ymin _—
(1) = < 1 T t (DEC)
1 — min
“Ymin | ( Tfy )t (INC)a

e Denoted as ‘FIX’ (fixed), ‘DEC’ (decrease), and
'INC’(increase).

® Vuin € R is the minimum value.

o7 .. € N isthe maximum number os the iterations.
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Numerical evaluations

A. Clustering performance
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Figure 2: Clustering performance results of 2-D histogram data

(USPS dataset).

B. Convergence performance
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Figure 3: Lett: Convergence performance with different pro-
jection data using DEC algorithm of v,,;, = 0.5. Right: Con-
vergence performance comparison of different algorithm of ~(¢)

of Ymin = 0.5.

C. Comparison on different sparsity
5.0

4.0

3.0

2.0
1.0 | I ‘
0.0 II IIIII—.II.II-

-1.0

| ® Purity NMI m Accuracy lSpeed-up[MO]-
-2.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4. Performance comparison on different ratios (USPS
dataset).



