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1. Introduction where F2 and B2 are the foreground attention map and background attention map,
q Y respectively.
® ODIs have higher resolution, making 1t difficult for streaming and : :
. 5 5 5 [2.3 Ranking attention module J
rendering;
® Although these deep teedtorward CNNs perform well in saliency To calculate the ranking scores of the channel-wise feature maps, we utilize a two-
prediction task, they have the following limitations: layer network f refinement by summing with the channel-wise global max-pooling
v" Deep feedforward CNNs are too complex in design and contain of the tensor f,,,, in an element-wise manner:
a vast number of layers, which 1s difficult to map to the ventral
stream structure of the brain visual system. rp=f,(8:)+ fmax (5;),
v" They lack biologically-important brain structures (i.e. recurrenc
connectivity), which 1s difficult to match the complex neurons For the ranking scores of channel-wise feature maps in §., we need to rank these channel-wise
states 1n the brain. feature maps according to the ranking score r; :
Decoder
Laver
- (M ( (M (& S, = rank (S ; | r;),
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R | ' where S represents the ordered channel-wise feature maps afeter rank. Then we need to select
| — important features for the final fine-grained saliency prediction and discard redundant features.
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{3.1 Qualitative comparison }

(b) Feedforward CNMNMNs Architecture

Fig.1 Architecture overview of deep recurrent CORnet-S and deep feedforward CNN:Gs. e
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2. Proposed Model
k p y BMS‘%GE}-

:

13

DV

--

=da
-
-
Jreme
=3
>~

Fig.3 Visual comparison of our results with other approaches for predicting
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Fig.2 Architecture overview of proposed brain-like saliency prediction model. saliency maps of head fixations on the Salient360! dataset and the ODS dataset.
[2-1 CORnet-S module } £3.2 Quantitative comparison J
The CORnet-S module 1s a lightweight ANN with four computational areas, conce- Evaluation metrics: NSS, CC, AUC and KL divergence.
ptualized as analogous to the ventral visual areas (V1, V2, V4 and IT) and recurrent
connections. We modify the original CORnet-S structure and add a channel attention Methods Salient360! ODS
module behind the IT area and the channel attention maps are calculated as follows: CC | AUC | NSS | KL divergence | CC | AUC | NSS | KL divergence
FC — O'( ML P( Avgpoo [( f )) + ML P( Maxpoo [( f ))) BMS [9] 0562 | 0.721 | 0.963 0.589 0545 | 0.687 | 0.942 0.634
BMS360 [4] | 0.716 | 0754 | 1372 0.583 0648 | 0724 | 1224 0615
=o(w;(wy(/, acvg )+ Wi (Wo (fimax ) GBVS360 [4] | 0587 | 0836 | 0994 | 0562 | 0569 | 069 | 0975 | 0571
| | | | | DVA[16] | 0728 | 0.772 | 1.39% 0.594 0612 | 0765 | 1327 0.541
where o 1s the sigmoid function, w, and w are the MLP weights. SALICON [13] | 0.745 | 0781 | 0.998 0.554 0.724 | 0769 | 0.987 0.538
. MLNet [17) | 0764 | 0.812 | 1.012 0.713 0.745 | 0797 | 1081 0.686
[22 Template feature extraction module J SalNet360 [11] | 0795 | 0.843 | 1.58] 0.514 0.776 | 0.821 | 1565 0.534
Ours 0913 | 0922 | 2.020 0.498 0.892 | 0.878 | 2015 0.512

Specifically, we employ a two-stage network to learn part attention maps. The first
stage individually predicts foreground attention f!and background attention glby two

Salient360 and ODS datasets.
1 | TF | | TF
F o= @ (F )9 B = ¢ (F )9
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where /7" is the feature map obtained by vggl6 network, ¢ and ¢1 denote two
prediction networks. In second stage, the attention maps obtained by the first stage are
further refined and the specific equations are expressed as follows:

F?=*(F|F',B"), B’ =¢*(F|F',B"),






