

Introduction

Motivation

- Conventional multi-view subspace learning methods can not directly characterize the structure information and the consensus of multi-view data
- These methods cannot deal with noisy data well

Contributions

- We propose a shared double nuclear norm-based low rank model in embedding subspace to uncover the globally shared structure information among multiple feature data, and utilize a sparse term to fit the error, which makes ESLRFC robust to noise.
- We develop an enhanced correlation analysis to _ simultaneously exploiting the correlations among multiple feature sets and removing the redundancy of each view.
- We develop an unify optimization problem, which can be effectively solved via an alternating minimization algorithm.

Related work

-Low rank representation

$$\min_{\mathsf{H},\mathsf{O}} \|\mathsf{H}\|_* + \eta \|\mathsf{O}\|_{2,1}, s.t. \mathsf{A} = \mathsf{A}\mathsf{H} + \mathsf{O}$$

A data matrix, H representative matrix, O error component. -Correlation-based multi-view subspace learning

$$\max_{\mathsf{P}_{1},\cdots,\mathsf{P}_{m}} \sum_{i} \sum_{j,i\neq j} tr(\mathsf{P}_{i}^{T}\mathsf{C}_{ij}\mathsf{P}_{j}), s.t. \mathsf{P}_{i}^{T}\mathsf{C}_{ii}\mathsf{P}_{i} = \mathsf{I}, i = 1, \cdots$$
$$\mathsf{C}_{ii} = \mathsf{X}_{i}\mathsf{X}_{i}^{T} \quad \mathsf{C}_{ij} = \mathsf{X}_{i}\mathsf{X}_{j}^{T}(i\neq j)$$

Embedding shared low-rank and feature correlation for multi-view data analysis Zhan Wang¹, Lizhi Wang¹, Lei Zhang¹, and Hua Huang²

¹ Beijing Institute of Technology, ² Beijing Normal University

Our approach

Embedding shared low-rank and feat correlation

$$\min_{\substack{\mathsf{U},\mathsf{V}\\\mathsf{Z},\mathsf{P}_i,\mathsf{E}_i}} \|\mathsf{U}\|_* + \|\mathsf{V}\|_* + \lambda \sum_i \|\mathsf{E}_i\|_{2,1}$$
$$-\alpha \sum_i \sum_{j,i\neq j} tr(\mathsf{P}_i^T\mathsf{C}_{ij}\mathsf{P}_j) + \beta$$
$$s.t. \ \mathsf{P}_i^T\mathsf{X}_i = \mathsf{P}_i^T\mathsf{X}_i\mathsf{Z} + \mathsf{E}_i, \mathsf{Z} = \mathsf{UV}$$
$$i = 1, 2, \cdots, m.$$

- Multiple views have common representation matrix
- Double nuclear norm is used to construct more accurate low-rank representation matrix.
- Correlation analysis reveal the correlation of multi-view data
- $\ell_{2,P}$ norm on projection matrix is used to select a subset with \bullet representative features from the multi-view data
- A unify framework, which explores the structure and correlation, is develop for seeking the robust projection
- ADMM algorithm is adopted to solve the optimization problem

, *m*,

ure
$\sum_{i} \ P_{i}\ _{2,p}^{p}$
$P_i^{T}P_i = I$

Experimental Results

Results on three datasets

Mathad	Yale			eNTERFACE'05		
Method	/ =3	/ =4	/ =5	/ =60	/ =80	<i>I</i> =100
PCA _{FC}	69.33 ± 3.46	72.86 ± 3.34	75.00 ± 4.20	58.70 ± 1.48	65.80 ± 2.40	71.87 ± 1.07
LRE _{FC}	69.92 ± 2.31	74.10 ± 3.93	77.89 ± 3.37	58.75 ± 1.43	65.90 ± 2.37	71.90 ± 1.10
MCCA	70.75 ± 3.67	73.33 ± 3.10	77.89 ± 3.37	53.21 ± 1.93	61.35 ± 2.30	67.69 ± 2.74
SCCA	67.50 ± 3.83	70.38 ± 2.11	72.78 ± 3.79	56.33 ± 1.97	63.16 ± 2.25	69.03 ± 2.03
PLS	70.58 ± 4.30	72.86 ± 3.15	75.00 ± 2.58	53.90 ± 1.34	60.48 ± 2.65	64.95 ± 2.90
MDcR	73.00 ± 2.81	76.67 ± 3.68	81.78 ± 3.60	63.30 ± 1.58	70.57 ± 2.18	76.38 ± 2.68
ESLRFC	73.75±3.50	77.71±3.94	82.89±3.40	63.08±1.71	71.65±2.60	77.95±2.19
Method	COIL-20			COIL-20 with noise		
	/ =5	<i>I</i> =10	<i>I</i> =15	20% noise	30% noise	40% noise
PCA _{FC}	84.78 ± 1.74	90.59 ± 0.96	95.32 ± 0.59	92.98 ± 0.68	90.04 ± 0.56	84.54 ± 1.46
LRE _{FC}	84.96 ± 1.41	91.31 ± 1.06	95.38 ± 0.79	93.71 ± 0.63	92.61 ± 0.64	90.72 ± 0.91
MCCA	83.62 ± 1.57	91.06 ± 1.14	94.79 ± 0.86	92.90 ± 0.70	90.08 ± 0.85	83.80 ± 1.17
SCCA	83.75 ± 1.74	90.67 ± 0.98	95.21 ± 0.57	89.97 ± 0.83	84.19 ± 0.80	78.97 ± 1.59
PLS	85.01 ± 1.44	91.23 ± 1.01	95.26 ± 0.79	92.49 ± 0.75	88.61 ± 0.92	84.08 ± 0.69
MDcR	85.23 ± 1.61	91.42 ± 1.22	95.51 ± 0.66	94.10 ± 0.56	92.62 ± 0.52	89.85 ± 0.78
ESLRFC	85.78±1.93	92.19±0.97	95.88±0.73	94.48±0.90	93.14 ± 0.81	90.86±1.04

Model analysis

Method	Yale	eNTERFACE'05	
$ESLRFC_\lambda$	82.11± 2.84	76.13±2.26	
ESLRFCα	81.67±3.15	68.85±0.84	
$ESLRFC_{\beta}$	81.56±2.36	74.36±1.94	
ESLRFC	82.89±3.40	77.95±2.19	

