

1.MOTIVATION AND CONTRIBUTION

Motivation:

 \star Texture far from the image center has strong distortion while that near the image center only has little distortion.

+ On the other hand, images taken under structured scenes have many lines, these linesare more likely to be centrosymmetric with each other.

Distorted image containing a door

convolve the input

Contribution:

★ We propose a novel framework based on GAN for radial distortion correction, where rotation symmetry enhanced convolution kernels are applied to learn geometry features explicitly. **★** We develop a position-aware AIF layer to fully exploit the properties of radial distortion. **★** Further experiments show that our method outperforms previous methods in both synthetic and real distortion images.

3.VISUALIZATION OF FEATURE MAPS

 \star 0°, 90°, 180° and 270° denote the results of convolution using the same set of kernels that are rotated by 0, 90, 180 and 270 degrees, respectively. From the results, we can see that G-CNN can learn features of different orientations explicitly. These learned features are essential for radial distortion under the assumption of 'plumb-line'.

Position-aware and Symmetry Enhanced GAN for Radial Distortion Correction

Yongjie Shi, Xin Tong, Jingsi Wen, He Zhao, Xianghua Ying^{*}, and Hongbin Zha Key Laboratory of Machine Perception (MOE), School of EECS, Peking University

★ We first input the distorted image to the AIF layer and get an intensity adjusted image. Then, the intensity adjusted image is input to G-Encoder to extract different direction features. These learned features are recalibrated using SE-layer. The generator outputs a pixel flow used to correct the distorted image. Finally, the quality of the pixel flow and the warped image are judged by a discriminator to make it indistinguishable from the ground truth.

COMPARED WITH PREVIOUS METHODS				
	Method	#Params (M)	Dataset [25]	
	Rong et al. [25]	70.66	6.71	
	Shi et al. [30]	11.21	4.98	
	Miguel et al. [1]	_	5.46	
	Pixel2pixel [20]	54.41	6.22	
	Unet [26]	54.41	6.27	
	Ours	2.90	3.54	
	<image/>	<image/>	<image/>	

 \star Experiments on public dataset show that our method outperforms other state-of-the-arts while has fewer network parameters.

(d) Shi et al.