
MixTConv: Mixed Temporal Convolutional Ker-
nels for Efficient Action Recognition
Kaiyu Shan, Yongtao Wang, Zhi Tang, Ying Chen and Yangyan Li
Wangxuan Institute of Computer Technology, Peking University Alibaba Cloud Intelligence Business Group
Email: {shankyle, wyt, tangzhi}@pku.edu.cn {chenying.ailab, yangyan.lyy}@alibaba-inc.com

1. Introduction
To efficiently extract spatiotemporal features of video for action recognition, most state-of-the-art methods integrate 1D temporal convolutional filters
into 2D CNN backbones. However, they all exploit 1D temporal convolutional filters of fixed kernel size (i.e., 3) in their network building block, thus have
suboptimal temporal modeling capability to handle both long-term and short-term actions. To address this problem, we first investigate the impacts of
different kernel sizes for the 1D temporal convolutional filters. Then, we propose a simple yet efficient operation called Mixed Temporal Convolution
(MixTConv), which consists of multiple depthwise 1D convolutional filters with different kernel sizes. By plugging MixTConv into the conventional
2D CNN backbone ResNet-50, we further propose an efficient and effective network architecture named MSTNet for action recognition, and achieve
state-of-the-art results on multiple large-scale benchmarks.

2. Intuition
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Figure 1: Our method is related to the current
state-of-the-art method TSM[11]. In fact, the
shift operation is a special case of our proposed
MixTConv, more specifically, equal to a fixed
weight depthwise 1D convolution with fixed ker-
nel size of 3 (bi-directional shift), where tem-
poral kernel is fixed as: [0, 1, 0] for static
channels(3/4 of total channels), [1, 0, 0] for
backward-shift channels(1/8 of total channels),
and [0, 0, 1] for forward-shift channels(1/8 of
total channels), shown in Figure (a). Our exper-
iment shows that, using depthwise 1D convolu-
tion with learnable weight (Figure (b)) and mul-
tiple kernel sizes (Figure (c)) along the tempo-
ral dimension is more effective than these hand-
crafted temporal kernels to capture pyramidal
temporal contextual information.

3. Method
The pipeline of our method is shown as follows:
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Figure 2: The pipeline of the proposed video action recognition network Mixed Spatiotemporal
Network(MSTNet), based on the Mixed Temporal Convolution. "Ks" means kernel size, and "DW"
means depthwise.

We denote the input feature map for MixTConv operation as F ∈ R(B×T )×C×H×W , where B, H,
W , T , C is the batch size, height, weight, number of sampled frames and channel size. As illustrated
in Figure 2, we firstly reshape F as: F ∈ R(B×H×W )×C×T , and then apply the depthwise 1D
convolution with g different kernel sizes {k1, ..., kg} on the temporal dimension. Let Wm denote
a depthwise 1D convolutional kernel with kernel size of km. Unlike vanilla depthwise convolution,
MixTConv partitions channels into g groups {F̂ 1, ..., F̂ g} and applies depthwise 1D convolution with
different kernel sizes to each group, where cm denotes channels in the m-th group. Formally, the
mixed 1D convolution is defined as:

Ẑm
i,t =

∑
j

F̂ i
t+jW km−1

2 +j , m = 1, ..., g, (1)

where j ∈ [−km−1
2 , km−1

2 ] and Ẑm
i,t is the value of Ẑm at the t-th frame and i-th channel.

The final output tensor is a concatenation of all the output tensor {Ẑ1, ..., Ẑg} :

Z = Concat(Ẑ1, ..., Ẑg). (2)

4. Experiments
Comparison with the State-of-the-Art We compare MSTNet with state-of-the-art methods on
Something-Something v1 and v2 in Table 3. The comparison details are as follows:

Figure 3: Comparisons with state-of-the-art methods on Something-Something v1 and Something-
Something v2.
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