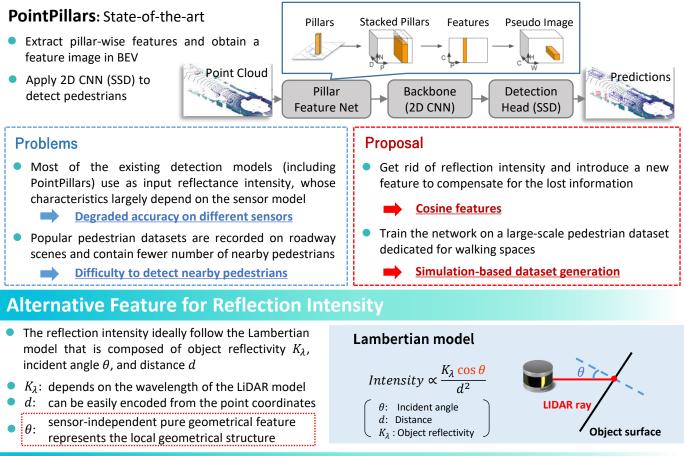
Paper ID: 631

Sensor-independent Pedestrian Detection for Personal Mobility Vehicles in Walking Space Using Dataset Generated by Simulation

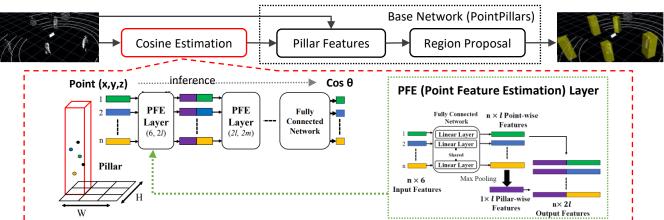
Takahiro Shimizu¹, Kenji Koide², Shuji Oishi², Masashi Yokozuka², Atsuhiko Banno², and Motoki Shino¹

¹The University of Tokyo, Japan

²National Institute of Advanced Industrial Science and Technology (AIST), Japan



Abstract


- A pedestrian detection method based on PointPillars is proposed for personal mobility vehicles
- To make PointPillars sensor-independent, intensity features are replaced with cosine local geometric features
- The proposed CosPointPillars is trained on a dataset generated using a realistic 3D LiDAR simulator
- The combination of CosPointPillars and SimDataset enables us to robustly detect nearby pedestrians in real situations

Pedestrian Detection in a Walking Space

CosPointPillars

- A cosine estimation network, which estimates cosθ from point coordinates, is inserted just before PointPillars
- The estimated $\cos \theta$ is fed to PointPillars instead of reflection intensity

Simulation-based Pedestrian Dataset Generation


- Popular pedestrian datasets (e.g., KITTI) contain fewer nearby pedestrians since they are recorded on roadway scenes
- To apply CosPointPillars to real walking space environments, we create a large-scale dataset using 3D LiDAR simulation
- To obtain realistic point clouds, we developed a ray-casting-based 3D LiDAR simulator
- The quality of point clouds is very high compared to the ones generated from rough collision models in other simulators

Omni-directional depth images

Example of Simulation-based Pedestrian Detection Dataset (SimDataset)

Realistic point cloud (Ray-casting)

AirSim (rough collision models)

• A pedestrian detection dataset that contains over 22k frames and 120k pedestrian labels is generated using simulation

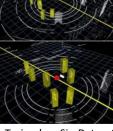
Evaluation

KITTI Dataset

- We compared the proposed CosPointPillars with the original PointPillars trained with and without reflectance intensity
- The accuracy of PointPillarge largely deteriorated when trained without reflectance intensity
- The accuracy got recovered by introducing cosine features instead of reflectance intensity

Simulation-based Dataset (SimDataset)

- We trained two CosPointPillars on KITTI and SimDataset, respectively
- The one trained on KITTI showed a low AP for pedestrians closer than 2.5m because <u>KITTI</u> <u>contains fewer number of nearby pedestrians</u>
- The network trained on SimDataset showed a good AP in all the detection range


Network	Reflectance	KITTI BEV AP [%] (IoU 0.5)			Training	SimDataset BEV AP [%]		
		Easy	Moderate	Hard	Dataset	< 2.5m	≧ 2.5m	Total
PointPillars	w/	84.36	79.97	76.82	КІТТІ	70.14	85.30	84.54
	w/o	80.22	75.92	74.48				
CosPointPillars	w/o	82.35	77.29	75.94	SimDataset	85.63	88.14	87.89

Pedestrian Detection in a Real Environment

- We ran two CosPointPillars models respectively trained on KITTI and SimDataset in a real walking space environment
- The network trained on SimDataset successfully detected nearby pedestrians while the other one failed to detect them

Input Point Cloud

Trained on SimDataset

Training	F-measure					
Dataset	< 2.5m	≧ 2.5m	Total			
КІТТІ	30.67	68.80	63.04			
Sim Dataset	96.36	98.44	98.06			