DCT/IDCT Filter Design for Ultrasound Image Filtering

Barmak Honarvar ${ }^{1,2, *}$, Jan Flusser ${ }^{2}$, Yifan Zhao ${ }^{1}$, John Ahmed Erkoyuncu ${ }^{1}$ and Rajkumar Roy ${ }^{3}$ ${ }^{1}$ TES Centre, SATM, Cranfield University, UK (* barmak@cranfield.ac.uk)
${ }^{2}$ Czech Academy of Sciences, Institute of Information Theory and Automation, Czech Republic
${ }^{3}$ School of Mathematics, Computer Science and Engineering City, University of London, London, UK

DCT/IDCT Filter Formulation

- Theorem: A discrete transformation of a discrete signal, $f(n)$ of length N, over a kernel function of $g(n, k)$ can be derived by the discrete convolution of the kernel and the flipped signal which is evaluated at $N-1$.

- $X_{k}=c(k) \sum_{n=0}^{N-1} x(n) \cos \left[\frac{\pi}{N}\left(n+\frac{1}{2}\right) k\right]=c(k)\left\{\left.x^{F}(n) * h_{k}(n)\right|_{n=N-1}\right\} \Rightarrow H_{k}(z)=\frac{\alpha_{k}\left(1-z^{-1}\right)}{1-2 z^{-1} \cos \phi_{k+}+z^{-2}}$ where $\alpha_{k}=\cos \left(\frac{\varphi_{k}}{2}\right)$.

- $x(n)=\sum_{n=0}^{N-1} c(k) X_{k} \cos \left[\frac{\pi}{N}\left(n+\frac{1}{2}\right) k\right]=\left.Y^{F}(k) * h_{n}(k)\right|_{k=N-1} \Rightarrow H_{n}(z)=\frac{1-z^{-1} \cos \omega_{n}}{1-2 z^{-1} \cos \omega_{n}+z^{-2}}$ where $\omega_{n}=\frac{\pi}{N}\left(n+\frac{1}{2}\right)$.

Computational Time

Number of multiplication and addition operations for computation of DCT coefficients based on three different methods for all fetus ultrasound test images with size 400×400.

Operation	Fast algorithms		Proposed algorithm
	$[2]$	$[11]$	$\mathbf{1 6 2}$
Multiplication	560	245	$\mathbf{5 2 0}$
Addition	2450	NA	$\mathbf{5 2 0}$

Acknowledgements \& Ref.

This work has been supported by the Czech Science Foundation with Grant numbers $18-26018 \mathrm{Y}$, GA1807247 S and by the UK EPSRC GCRF with Grant mumben EP /R013950/1.
[2] Che-Hong Chen et al., IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 10, pp. 2017-2030, Oct 2004
[11] S. Tai and S.-M. Yang, Mathematical Problems in Engineering, vol. 2017, 2017.

Experiments

- DCT-Wiener filtering
$\widehat{\mathbf{H}}_{\mathbf{W}}\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right)=\frac{\widehat{\mathbf{P}}_{\mathbf{x}}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)}{\widehat{\mathbf{P}}_{\mathbf{x}}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)+\lambda\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) \sigma^{2}}$
sponse of the Wiener filter, $\widehat{P}_{x}\left(k_{1}, k_{2}\right)$ is power spectral density estimates of the noise-free image and σ^{2} is noise variance since $\lambda\left(k_{1}, k_{2}\right)$ is proportonal to the image size.
$\widehat{H}_{W}\left(k_{1}, k_{2}\right)$ is an estimate of the frequency re-
- DCT Filtering results for the real fetal ultrasound images

- Error, similarity and quality metrics:
- SNIRE is the Statistical-Normalization Image Reconstruction Error
- BRISQUE is Blind/Referenceless Image Spatial Quality Evaluator
- SSIM is the Structural Similarity

Index Measure

- Image reconstruction of ultrasound fetus images

