

DCT/IDCT Filter Design for Ultrasound **Image Filtering**

Barmak Honarvar^{1,2,*}, Jan Flusser², Yifan Zhao¹, John Ahmet Erkoyuncu¹ and Rajkumar Roy³ ¹ TES Centre, SATM, Cranfield University, UK (*barmak@cranfield.ac.uk)

²Czech Academy of Sciences, Institute of Information Theory and Automation, Czech Republic ³School of Mathematics, Computer Science and Engineering City, University of London, London, UK

DCT/IDCT Filter Formulation

• Theorem: A discrete transformation of a discrete signal, f(n) of length N, over a kernel function of g(n,k) can be derived by the discrete convolution of the kernel and the flipped signal which is evaluated at N-1.

•
$$X_k = c(k) \sum_{n=0}^{N-1} x(n) \cos\left[\frac{\pi}{N} \left(n + \frac{1}{2}\right) k\right] = c(k) \left\{ x^F(n) * h_k(n) \Big|_{n=N-1} \right\} \Rightarrow H_k(z) = \frac{\alpha_k (1-z^{-1})}{1-2z^{-1} \cos \varphi_k + z^{-2}} \text{ where } \alpha_k = \cos\left(\frac{\varphi_k}{2}\right).$$

 $Y^F(k)$

$$x(n) = \sum_{n=0}^{N-1} c(k) X_k \cos\left[\frac{\pi}{N} \left(n + \frac{1}{2}\right) k\right] = Y^F(k) * h_n(k) \bigg|_{k=N}$$

$$\int_{0}^{1} c(k) X_{k} \cos\left[\frac{\pi}{N} \left(n + \frac{1}{2}\right) k\right] = Y^{F}(k) * h_{n}(k) \Big|_{k=N-1} \Rightarrow H_{n}(z) = \frac{1 - z^{-1} \cos \omega_{n}}{1 - 2z^{-1} \cos \omega_{n} + z^{-2}} \text{ where } \omega_{n} = \frac{\pi}{N} \left(n + \frac{1}{2}\right).$$

Computational Time

Number of multiplication and addition operations for computation of DCT coefficients based on three different methods for all fetus ultrasound test images with size 400×400 .

Operation	Fast algorithms		Proposed algorithm	
	[2]	[11]	Troposed argorithm	
Multiplication	560	245	162	
Addition	2450	N/A	520	

Experiments

• DCT-Wiener filtering $\widehat{\mathbf{H}}_{\mathbf{W}}(\mathbf{k_1}, \mathbf{k_2}) = \frac{\widehat{\mathbf{P}}_{\mathbf{x}}(\mathbf{k_1}, \mathbf{k_2})}{\widehat{\mathbf{P}}_{\mathbf{x}}(\mathbf{k_1}, \mathbf{k_2}) + \lambda(\mathbf{k_1}, \mathbf{k_2})\sigma^2}$

 $\hat{H}_W(k_1,k_2)$ is an estimate of the frequency re-

sponse of the Wiener filter, $\hat{P}_x(k_1, k_2)$ is power spectral density estimates of the noise-free image and σ^2 is noise variance since $\lambda(k_1, k_2)$ is proportional to the image size.

 $2\cos\omega_n$

 x_n

- DCT Filtering results for the real fetal ul-
- Image reconstruction of ultrasound fetus

trasound images

images

This work has been supported by the Czech Science Foundation with Grant numbers 18-26018Y, GA18-07247S and by the UK EPSRC GCRF with Grant number EP/R013950/1.

[2] Che-Hong Chen *et al.*, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 10, pp. 2017–2030, Oct 2004. [11] S. Tsai and S.-M. Yang, Mathematical Problems in Engineering, vol. 2017, 2017.

- Error, similarity and quality metrics:
- SNIRE is the Statistical-Normalization Image Reconstruction Error

• BRISQUE is Blind/Referenceless Image Spatial Quality Evaluator

• <u>SSIM</u> is the Structural Similarity Index Measure

Max. Order	50	100	200	300	400
SNIRE	15.7917	10.7213	5.55523	3.33236	0.920456
SSIM	0.954312	0.979496	0.994569	0.998042	0.999844

