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| Background of ETA & RNML-ETA

Estimated Time of Arrival (ETA) is one of the most fundamental problems in Intelligent Transportation System. It is considered as
predicting the travel time from the origin to the destination along a given path. The route consists of a sequence of links. One of
the key techniques is to use embedding vectors to represent links. However, the embedding suffers from the data sparsity
problem that many links are traversed by too few floating cars even in large ride-hailing platforms. To address the problem, we
propose the Road Network Metric Learning framework for ETA (RNML-ETA), as shown in Figure 1.
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» Auxiliary task: uses metric learning to transfer the
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» The difference matrix for measuring the difference Table I. Results of the pickup dataset

between links: Qij = jS =[50 -7 (1)”2 MAPE (%) MAE (scc) RMSE (scc)
. Route ETA 25.010 69.008 106.966
(3) Triangle Loss. WDR-no-link-emb ~ 20.845 59.018 95.876
WDR 19.386 54.686 89.976

RNML-ETA 19.215 53.546 87.617

Table Il. Results of the trip dataset
MAPE(%) MAE (sec) RMSE (sec)

> Restrict the lengths of the link embedding distance triangle
edges to be in the same order as difference matrix triangle.
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