VSB²-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li į51174500103@ecnu.edu.cn Software Engineering Dept, ECNU, CHINA

Summary

Problem: The existing methods mainly focused on optimizing the mapping between hash codes and semantic space, but ignored the core of the hash problem that generates discriminative hash codes.

Contributions:

- 1. A novel inductive framework embeds the semantic space and visual feature space into the hamming space simultaneously.
- 2. The reconstructive semantic relationships are established to preserve local similarity relationships and explicitly enlarge the discrepancy.
- 3. A two-task architecture is directly employed to enhance the generalization and transfer abilities on unseen classes.

Problem Setting

Zero-shot hashing aims at learning hashing model from seen classes and the obtained model is capable of generalizing to unseen classes for image retrieval.

Framework

The architecture is a bi-branch network: the semantic similarity branch reconstructs the semantic space to hamming space, and the visual feature transfer branch embeds the visual features into the same hamming space simultaneously. In addition, task-driven regularization is composed of classification module and visual feature reconstruction module.

Main Result

Comparison of methods on public datasets.

Ablation Study

Effect of different number of class for training and testing on ImageNet dataset.

Selecting methods:

- (1) Wasserstein metric
- (2) Euclidean metric
- (3) Random selection

			Imag	eNet			
0.5					-		
0.45					-		
0.4				•		4	
W 0.35							
							■ SitNet
0.3							■ VSB ² -Ne
0.25							
0.2							
20	30	40	50	60 1 classe	70	80	

Madaad	AwA(MAP)					
Method	16 bits	32 bits	48 bits	64bits		
Mini-SitNet	0.128	0.150	0.175	0.192		
Mini-VSB ² -Net	0.151	0.178	0.220	0.241		

Method	AwA(MAP)					
	16 bits	32 bits	48 bits	64bits		
VSB ² -G	0.155	0.198	0.217	0.270		
VSB ² -Net	0.175	0.230	0.272	0.293		