

# **One-stage Multi-task Detector for 3D Cardiac MR Imaging**

Weizeng Lu<sup>1</sup>, Xi Jia<sup>2</sup>, Wei Chen<sup>2</sup>, Nicolo Savioli <sup>3</sup>, Antonio de Marvao<sup>3</sup>, Linlin Shen<sup>1\*</sup>, Declan O'Regan<sup>3</sup> and Jinming Duan<sup>2</sup>

<sup>1</sup>Computer Vision Institute, School of Computer Science and Software Engineering,

Shenzhen University, Shenzhen, China

<sup>2</sup>School of Computer Science, University of Birmingham, United Kingdom

<sup>3</sup>MRC London Institute of Medical Sciences, Imperial College London, United Kingdom



#### Abstract

In this paper, we propose a novel multi-task learning framework, for real-time, simultaneous landmark location and bounding box detection in 3D space. Our method extends the famous single shot multi box detector (SSD) from single-task learning to multitask learning and from 2D to 3D. Furthermore, we propose a post-processing approach to refine the network landmark output, by averaging the candidate landmarks. Owing to these settings, the proposed framework is fast and accurate. For 3D cardiac magnetic resonance (MR) images with size 224×224×64, our framework runs ~128 volumes per second (VPS) on GPU and achieves 6.75mm average point-to-point distance error for landmark location, which outperforms both state-of-the-art and baseline methods. We also show that segmenting the 3D image cropped with the bounding box results in both improved performance and efficiency.

### Motivation

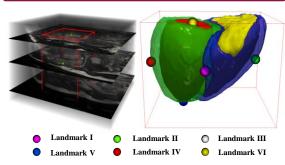



Fig. 1: Bounding box and landmarks in a CMR volumetric image. The left figure shows the location of the bounding box and six landmarks on a volume, and the right figure is the corresponding cardiac segmentation with six landmarks and the bounding box.

- ✓ MT3D is a multi-task learning framework tailored for medical imaging.
- ✓ Detect both anatomical landmarks and bounding box from CMR volumes.
- ✓ Extends the SSD from single-task learning to multitask learning and from 2D to 3D.
- ✓ The proposed framework is fast and accurate.

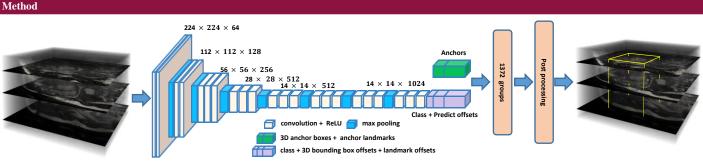
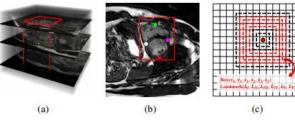




Fig. 2: The architecture of MT3D. MT3D adopts VGG16 as backbone network, which takes a whole volumetric CMR image as input, gradually downsamples the feature maps, and predicts the confidences and the offset for the anchor groups (bounding box and six landmarks).



hin a bounding box.

unning speed. In "L-Average" column, e location) for 3Dbaseline and MT3D

| approach     | L-I   | L-II  | L-III | L-IV  | L-VI | L-V   | L-Average         | VP |
|--------------|-------|-------|-------|-------|------|-------|-------------------|----|
| human        | 7.55  | 21.78 | 8.77  | 11.51 | 5.84 | 10.12 | 10.93             | -  |
| Multi-SSLLN  | 5.64  | 13.75 | 5.43  | 10.74 | 6.35 | 9.42  | 8.56              | 31 |
| single-SSLLN | 10.98 | 8.06  | 6.44  | 6.53  | 5.49 | 6.00  | 7.25              | 31 |
| 3D-baseline  | 5.89  | 11.13 | 6.94  | 6.74  | 8.86 | 7.95  | 8.11/7.92         | 99 |
| MT3D         | 5.02  | 8.38  | 7.36  | 6.32  | 6.87 | 6.58  | 6.91/ <b>6.75</b> | 12 |
|              |       |       |       |       |      |       |                   |    |

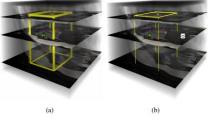



Fig. 4: A post processing example from validation set.

Segmentation

## **Bounding box detection**

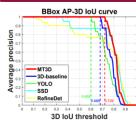



Fig. 5: The variations of AP with various 3D IoU thresholds

TABLE I: Cor running speed

| Approaches     | B-wall | B-centroid | VPS |
|----------------|--------|------------|-----|
| YOLO V2 [24]   | 4.39   | 4.61       | 2.0 |
| SSD [7]        | 3.93   | 6.24       | 1.6 |
| RefineDet [22] | 8.60   | 12.08      | 1.4 |
| 3D-baseline    | 4.02   | 4.42       | 99  |
| MT3D           | 3.11   | 4.38       | 128 |

| mparisons of detection performance and |  |
|----------------------------------------|--|
| between different methods              |  |

|              | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                                 |
|--------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|
| Fig. 3: MT30 | D takes the entire volume as input                                                                              | and predicts six landmarks with |
|              | Landmark localization                                                                                           | n                               |
|              | TABLE II: Comparisons of land<br>we report both NMS and averag                                                  |                                 |

| VI | L-V   | L-Average         | VPS |
|----|-------|-------------------|-----|
| 34 | 10.12 | 10.93             | -   |
| 5  | 9.42  | 8.56              | 31  |
|    | ···-  |                   | -   |
| 19 | 6.00  | 7.25              | 31  |
| 86 | 7.95  | 8.11/7.92         | 99  |
| 37 | 6.58  | 6.91/ <b>6.75</b> | 128 |
|    | 0.00  | 0.7 1/01/0        |     |

TABLE III: The segmentation comparisons of before and after the Prediction bounding box is used to crop the CMR image.

|     | Dice    | Index   | Hausdorff Dist. (mm) |         |
|-----|---------|---------|----------------------|---------|
|     | full    | cropped | full                 | corpped |
| LVC | 0.9385  | 0.9491  | 3.6793               | 3.2875  |
| LVW | 0.8288  | 0.8416  | 4.9195               | 4.2860  |
| RVC | 0.87551 | 0.8808  | 7.0745               | 7.1443  |
| RVW | 0.6231  | 0.6384  | 11.5921              | 8.4534  |
| VPS | 31      | 105     | 31                   | 105     |