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Introduction
There are several limitations of the existing studies on flexi-
ble/trainable activation functions. First, most of existing work
focus on some specific forms of parameterized activation func-
tions rather than a more general form, or consider each compo-
nent of the combination as a fixed activation function. Second,
there is a lack of attention to flexible activations with bounded
domain such as sigmoid and tanh. Third, existing works rarely
discuss the regularization of activations parameters, which have
different nature from normal model parameters. In this study, we
consider the activation function as a combination of a set of com-
ponent functions following several principles. Based on these
principles, we develop two flexible activation functions that can
be implemented for bounded or unbounded domains.

Main Objectives
1. Design a general form and updating rules for combined flexi-

ble activation functions.
2. Develop flexible activation functions with both bounded and

unbounded domains.
3. Design regularization terms for the flexible activation param-

eters to control the flexibility.
4. Use experiments to show the advantage of proposed activation

function and regularization techniques.

Methods
We implement a general form of parameterized activation func-
tions linearly combining different activation functions as com-
ponents:

oi(z,α
i,βi) =

K∑
k=1

αikfk(z,βik),

K∑
k=1

αi,k = 1,

0 ≤ αi,k ≤ 1 ∀k, i.

(1)

where i indexes the neuron, and z = zl = WlXl−1 + bl is the
input of the activation layer indexed by l. k is the index of each
component and αi,k is the corresponding combination weight.
βik is the activation parameter vector for the k-th component
activation fk in ith neuron. The back propagation of activation
parameters by stochastic gradient descent can be done by:

αik → αik − γ
∂L

∂αik
= αik − γ

∂L

∂oi
· fik(z,βik),

βik → βik − γ
∂L

∂βik
= βik − γ

∂L

∂oi
· αik

∂fik(z,βik)

∂βik
.

(2)

We propose three principles for selecting the components for
combined flexible activation functions.
• Each component should have the same domain as the baseline

activation function.
• Each component should have an equal range as the baseline

activation function.
• Each component activation functions should be expressively

independent of other component functions with the follow-
ing definition, which means each component function should
not be expressed by a linear combination of other components
with effective training for any output from the previous layer.

Based on the general combination form and the three principles
mentioned above, we design two types of activation function as
follows:
P-Sig-Ramp: This can be applied to replace fixed sigmoidal
functions.

o(z;α, β) = α · σ(z) + (1− α) · f (z;β),

where 0 ≤ α ≤ 1 and

f (z;β) =


0 if z < − 1

2β ,

βz + 1
2 if − 1

2β ≤ z ≤ 1
2β ,

1 if z > 1
2β .
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Figure 1: Examples of P-Sig-Ramp with different activation parameters.

P-E2-ReLU/Id: This can be applied to replace fixed ReLU,
ELU and PFeLU functions.

o(z;α, β) = αRelu(z) + βElu(z) + (1− α− β)(−Elu(−z)),

o(z;α, β) = αRelu(z) + (1− α)(−Elu(−z, β) + Elu(z, β)),

o(z;α, β) = αz + (1− α)(−Elu(−z, β) + Elu(z, β)).

−2 0 2−2

−1

0

1

2

ou
tp
ut

α=1, β=0

−2 0 2−2

−1

0

1

2
α=0.5, β=0.25

−2 0 2−2

−1

0

1

2
α=0.25, β=0.25

−2 0 2
input

−2

−1

0

1

2

ou
tp
ut

α=0.25, β=0.5

−2 0 2
input

−2

−1

0

1

2
α=0, β=0.25

−2 0 2
input

−2

−1

0

1

2
α=0, β=0.5

Figure 2: Examples of the 1st P-E2-ReLU with different activation parame-
ters.

In addition, to control the flexibility and avoid over-
parameterization, we introduce two regularization terms. The
whole loss function can be written as follows.

L = L0

+ δ1

∑
j

λj
mj

∑
i

∑
k

||αijk − ᾱjk||2

+
δ2

n

∑
i

∑
j

∑
k

||αk0 − αijk||2

+
δ3

n

∑
i

∑
j

∑
k

(||ReLU(αijk∗ − (1−∆))||2

+ ||ReLU(−∆− αijk∗)||2) + other terms.

(3)

The first regularization term controls the deviation of flexible
activation functions from the average function of a layer. The
second regularization term controls the flexible activation func-
tions from the fixed baselines such as ReLU and sigmoid.

Results

First, we do multi-variate time series forecasting on G7 indices
with stacked LSTMs, while four different hidden layer config-
urations are applied. The three candidate activation functions
include fixed sigmoid function, P-Sig-Ramp with no regulariza-
tion on activation parameters, P-Sig-Ramp with towards-mean
regularization with a regularization coefficient of 0.025, and P-
Sig-Ramp with optimized regularization coefficients. We do
hyper-parameter search to find the optimal learning rate for each
model and each activation functions. The learning curves of 50
runs on validation set are given in Figure 3.

Figure 3: Comparison between the average learning curves (with error bars)
of LSTM models with different activation functions.

The next experiment is to apply two convolutional auto-
encoder models for lossy image compression on MNIST and
FMNIST. The baseline activation functions applied include
ReLU, PReLU, GeLU, ELU, also we use the proposed P-E2-
ReLU. For each of the baseline activation functions, we use the
optimized learning rate, while for P-E2-ReLU, we apply both
its optimized learning rate and the optimized learning rate of
other baseline activation functions. The learning curves on vali-
dation set demonstrate that P-E2-ReLU consistently outperform
other activation functions even with the optimized learning rate
of other methods. The result is given by Figure 4.
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Figure 4: Comparison between the average learning curves (with errorbars)
of convolutional auto-encoder models with different activationfunctions on
image compression task.

Another experiment that applies another covolutional auto-
encoder on CIFAR10 and SVHN with different activation func-
tions gives the validation curves shown in Figure 5, where the
proposed P-E2-Id outperforms other activation functions with
statistical significance as is shown in Table 1. Also, as is indi-
cated in Figure 6, a layer-wise activation function with shared
activation parameter could be sufficiently good to make a large
improvement for the optimal model performance.
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Figure 5: Comparison between the average learning curves (with errorbars)
of convolutional auto-encoder models with different activationfunctions on
image compression task.

Activation
Dataset

CIFAR10 SVHN

Model 1 P-E2-Id 1.01E-2 (2.4E-4) 1.25E-3 (3.9E-5)
Model 2 ELU 1.27E-2 (1.6E-4) 1.84E-3 (2.7E-5)
Model 3 PReLU 1.35E-2 (1.5E-4) 2.24E-3 (9.3E-5)
Model 4 P-E2-ReLU 1.05E-2 (2.8E-4) 1.38E-3 (6.3E-5)

Null Hypothesis p-value

Test 1 H0: m4 ≥ m2 2.05E-06 4.86E-7
Test 2 H0: m4 ≥ m3 4.77E-10 2.03E-7
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Figure 6: Comparison between the average learning curves (with error bars)
of Autoencoder models with flexible activation P-E2-ReLU under different
activation regularization settings.

Conclusions
• We proposed two types of combined flexible activation func-

tions: P-Sig-Ramp and P-E2-ReLU.

• We introduced two regularization terms to: (1) Control the
deviation of flexible activation functions from the average ac-
tivation function in each layer; (2) Control the deviation of
flexible activation functions from the baseline activation func-
tion.

• Experiments of learning tasks with LSTM and CAE show that
the proposed activation function and regularization terms are
effective in improving model convergence.


