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Vacant-space detection task

Contributions

We proposed a novel framework that allows the system to train a target model (e.g., a vacant-space detector)
via the task consistency with a source model (e.g., a car motion classifier).

Unlike transfer learning, the source model and the target model in our framework are not restricted to deal
with the same type of task.

The proposed framework is suitable for online learning, which is lable-free (unsupervised rewards).

We test the method on a parking lot scenario and corrupted rewards are filtered out automatically
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(a)i=1 (b)2=60
- "0" means vacant state "1" means occupy state.

Learning from an imperfect motion classifier

The number of clean/noisy trajectories under

different thresholds identified by the baseline motion
classifier and robust motion classifier. (Evaluate on

1530 trajectories)
- Cl: Clean, No: Noisy, MC: Motion Classifier
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Learning on a new parking lot
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Ablation study
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(a) Proposed method (b) VGG + Motion Cond.

EvalACC AdapIN (VGG + Motion Cond.)
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Supervised learning (Fine 97.93 98.18 98.57 98.76 99.21
tune) (M=600) |(M=1000)|(M=1400) |(M=1700) |(M=2000)

Task Consistency learning 98.84 % | 09.15% | 99.37 % | 99.57 *| 99.69 *
(Fine tune) (N=300) | (N=500) | (N=700) | (N=850) |(N=1000)

Task consistency learning (| 98.15 08.38 98.45 99.48 99.54
Train from scratch) (N=300) | (N=500) | (N=700) | (N=850) |(N=1000)

- M means the number of training samples for supervised learning.
- N means the number of training trajectories for task consistency learning.

45-degree view(as new parking lot scenario) 90-degree view (as original parking lot scenario)

Conclusions

We proposed a task consistency framework, which
enables the system to learn a target task from a
source task in a reinforcement learning manner.

The framework has two benefits:

« The source model and target model are not
restricted to deal with the same type of task.

+ By applying reinforcement learning approach
with unsupervised rewards, our framework is
label-free.

The framwork is applied to learn a vacant space
detector based on a motion classifier:

« The reward design is capable of filtering out
some easy corrupted rewards automatically.




