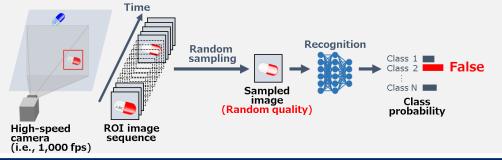
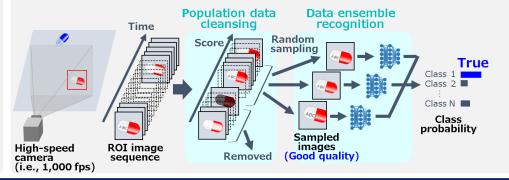
Online Object Recognition Using CNN-based Algorithm on High-speed Camera Imaging Framework for fast and robust high-speed camera object recognition based on population data cleansing and data ensemble


Shiqeaki Namiki^{1*}, Keiko Yokoyama^{1*}, Shoji Yachida¹, Takashi Shibata^{1†}, Hiroyoshi Miyano¹, Masatoshi Ishikawa² 2. Information Technology Center, The University of Tokyo *...Equally contributed +...this author now belongs to NTT 1. NEC,

Introduction

Background: High-speed camera has high temporal information density and low latency, which make fast moving object tracking and controlling easier. How about recognizing? Applications: mass production lines, autonomous vehicles, etc.


Problem: low latency vs. high accuracy with temporally dense images.

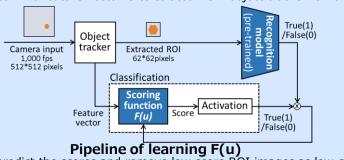
Naive approach: random sampling. The accuracy depends on the quality of ROI images.

Proposed Framework

- Population data cleansing based on the recognizabiliity score 1. -> Remove low quality ROI images so as not to sample them.
 - Data ensemble recognition with a single light-weight CNN model
- 2. -> more accurate, and more stable.

Details of proposed framework

1. Population data cleansing:


Purpose: Removes false ROI images, which recognition model yields as wrong labels. Limitations: Need to be simple and fast to keep up with frame rate,

Method:

- 1. Label ROI images as true/false by pre-trained CNN used in Data Ensemble.
- 2. Train a simple linear classification model(Scoring function F(u)) to predict the label using such as SVM or LDA.

$$F(\boldsymbol{u}) := \boldsymbol{w}^T \cdot \boldsymbol{u} + w_0 = 0 \qquad \qquad \substack{w^T: weight \ vector, \\ \boldsymbol{u}: feature \ vector, \\ \boldsymbol{w}_0: offset \ vector.}$$

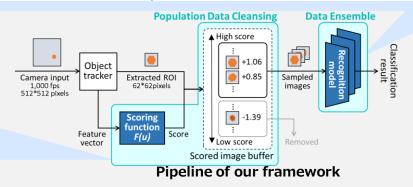
Note: The feature vector is calculated from object tracker for low latency.

3. When testing, predict the scores and remove low score ROI images as low quality.

2. Data Ensemble recognition:

Purpose: Improve and stabilize the recognition accuracy

Limitations: Great model with a high accuracy cannot be used because of high latency Method:

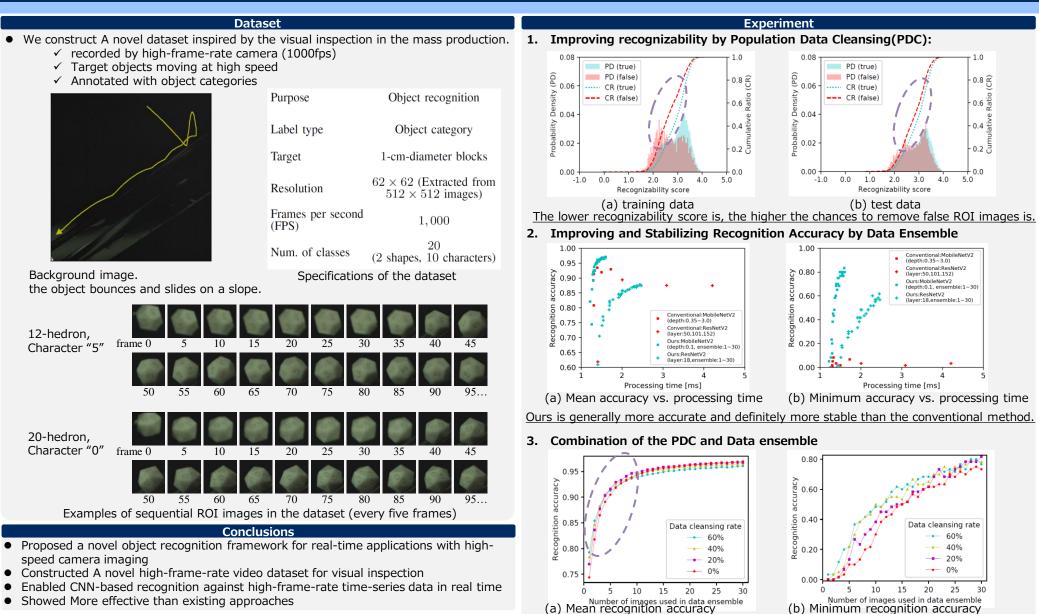

 $, x_{i+N}$

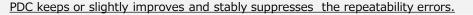
1.Construct light-weight model by decreasing the layers of existing CNN model. 2. Input multiple sampled images into the model and aggregate its outputs(C).

$$H^{j}(x_{i},\ldots,x_{i+N}) = \frac{1}{N} \sum_{k=i}^{i+N} h^{j}(x_{k}),$$

$$C_{i} = \arg \max H^{j}(x_{i},\ldots)$$

 h^{j} : j - th class probabilit v,


- $x_i: i th ROI image$,
- H^{j} : j th aggregated class probability,
- C_i : predicted class for the sequence.


Online Object Recognition Using CNN-based Algorithm on High-speed Camera Imaging Framework for fast and robust high-speed camera object recognition based on population data cleansing and data ensemble Shigeaki Namiki^{1*}, Keiko Yokoyama^{1*}, Shoji Yachida¹, Takashi Shibata¹⁺, Hiroyoshi Miyano¹, Masatoshi Ishikawa²

1. NEC, 2. Information Technology Center, The University of Tokyo

*…Equally contributed +…this author now belongs to NTT

This work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

