

# **Stylized-Colorization for Line Arts**



Tzu-Ting Fang National Tsing Hua University Hsinchu, Taiwan Duc Minh Vo SOKENDAI Tokyo, Japan Akihiro Sugimoto National Institute of Informatics Tokyo, Japan Shang-Hong Lai National Tsing Hua University Hsinchu, Taiwan

## Introduction

- The styles give different impression to the same anime character illustration.
- We address a novel problem of stylized-colorization which colorizes a given line art using a given coloring style in text.
- It can be stated as multi-domain image translation.
- Our task is challenging because it has 2 aspects: colorization and style transfer.
- We proposed a novel style feature loss to enhance the dissimilarity between different coloring styles.

## **Objective Function**

#### Adversarial loss

- Hinge loss helps the adversarial learning to be strong and stable.

$$\mathcal{L}_{D_{c}} = \mathbb{E}_{y_{c} \sim p_{data}} \left[ \max(0, 1 - D_{c}(y_{c})) \right] \\ + \mathbb{E}_{(x,s) \sim p_{data}} \left[ \max(0, 1 + D_{c}(G(x,s))) \right],$$
(1)  
$$\mathcal{L}_{D_{s}} = \mathbb{E}_{(y_{s},s) \sim p_{data}} \left[ \max(0, 1 - D_{s}(y_{s},s)) \right]$$
(2)

$$\mathcal{L}_{G} = -\mathbb{E}_{(x,s)\sim p_{\text{data}}} \left[ \text{max}(0, 1 + D_{\text{s}}(G(x, s), s)) \right],$$

$$\mathcal{L}_{G} = -\mathbb{E}_{(x,s)\sim p_{\text{data}}} \left[ D_{\text{c}}(G(x, s)) \right]$$

$$\mathcal{L}_G = -\mathbb{E}_{(x,s)\sim p_{\text{data}}}[D_{\mathbf{c}}(G(x,s))] - \mathbb{E}_{(x,s)\sim p_{\text{data}}}[D_{\mathbf{s}}(G(x,s),s))].$$
(3)

#### • Per-pixel loss

- L1 distance between the generated image and ground truth colored illustration.
- Enforcing the generator learning the color and keeping the image structure.

$$\mathcal{L}_{\text{pix}} = \mathbb{E}_{(y_{\text{c}}, x, s) \sim p_{\text{data}}} \| y_{\text{c}} - G(x, s) \|_{1}$$
(4)

#### • Style feature loss

- Firstly, we pre-trained a style classifier C by employing the center loss.
- Then, we obtained the feature representation *cs* for coloring style *s* to define our style feature loss:

$$\mathcal{L}_{\text{style}} = \mathbb{E}_{(x,s) \sim p_{\text{data}}} \left[ \left\| \boldsymbol{c}_{\text{s}} - C(G(x,s)) \right\|_{2}^{2} \right], \tag{5}$$

x: input line-art
s: the coloring style
yc: ground-truth colored image
ys: ground-truth stylized image
s: feature representation of style s
C(G(·)): the style feature of generated

• In summary, our full objective function is:

image

$$\mathcal{L} = \mathcal{L}_G + \lambda_{\text{pix}} \mathcal{L}_{\text{pix}} + \lambda_{\text{style}} \mathcal{L}_{\text{style}}, \tag{6}$$

, where  $\lambda_{pix}$  and  $\lambda_{style}$  are the hyper-parameters.



- We propose a GAN-based end-to-end model.
- The model has one generator and two discriminators.
- Generator:
  - Based on the U-Net architecture.
  - Receive a pair of a line art and a coloring style in text as its inputs.
- Discriminators:
  - Two discriminators share weights at early layers.
  - Judge the generated image in two aspects: one for color and the other for style.

## Results

### • Visual comparison against other methods:



## **Quantitative Comparison**

- We adopted three metrics for evaluation.
   PSNR, SSIM and FID
- R, G, W, A, M stand for Realistic, Galgame, Watercolor, Anime, Monochrome, respectively.

| Metric<br>Coloring style | PSNR ↑ |        |        |        |       | SSIM ↑ |       |       |       |       | FID ↓  |        |        |       |
|--------------------------|--------|--------|--------|--------|-------|--------|-------|-------|-------|-------|--------|--------|--------|-------|
|                          | R      | G      | W      | Α      | Μ     | R      | G     | w     | Α     | М     | R      | W      | Α      | М     |
| pix2pix [10]             | 8.378  | 11.028 | 11.488 | 10.535 | 7.357 | 0.389  | 0.516 | 0.501 | 0.506 | 0.407 | 146.62 | 123.91 | 129.03 | 93.87 |
| StarGAN [12]             | 4.978  | 5.062  | 6.288  | 5.112  | 3.649 | 0.145  | 0.158 | 0.222 | 0.184 | 0.165 | 165.83 | 161.03 | 176.79 | 106.8 |
| AsymmetricGAN [13]       | 5.180  | 5.095  | 6.047  | 4.927  | 3.486 | 0.165  | 0.151 | 0.226 | 0.201 | 0.157 | 173.20 | 163.75 | 197.24 | 114.3 |
| AAMS [23]                | 8.995  | 9.379  | 10.867 | 8.873  | 6.866 | 0.363  | 0.436 | 0.414 | 0.362 | 0.297 | 167.27 | 151.42 | 187.63 | 189.2 |
| Petalica+AAMS            | 9.266  | 9.504  | 10.764 | 9.454  | 6.688 | 0.377  | 0.459 | 0.442 | 0.412 | 0.302 | 151.86 | 126.66 | 160.61 | 141.6 |
| Ours                     | 10.753 | 11.511 | 12.957 | 11.165 | 7.799 | 0.455  | 0.573 | 0.563 | 0.548 | 0.445 | 118.88 | 117.38 | 125.49 | 88.34 |