

Paper ID: #704 PS T5 5

## AdaFilter: Adaptive Filter Design with Local Image Q Adacetech Basis Decomposition for Optimizing Image Recognition Preprocessing

<u>Aiga Suzuki</u><sup>\*+</sup>, Keiichi Ito<sup>\*</sup>, Takahide Ibe<sup>\*</sup>, Nobuyuki Otsu<sup>\*+</sup>

\*Adacotech Inc., <sup>†</sup>University of Tsukuba, <sup>‡</sup>National Institute of Advanced Science and Technology, Japan

contact: ai-suzuki@aist.go.jp

# A novel optimal image preprocessing filter design method for any image recognition tasks with the image basis decomposition and the Black-box optimization

## Background

### Image Preprocessing in Recognition Tasks

- An appropriate image preprocessing strongly affects the model performance in image recognition tasks in broad tasks
  - e.g., the  $\ensuremath{\textbf{blurring}}$  preprocessing to  $\ensuremath{\textbf{reduce}}$  an image noise
  - e.g., the edge extraction in the shape-dominant recognition tasks
- Linear image filtering is the most common way to preprocessing

#### **Optimal Preprocessing Design**

**Designing an optimal way to preprocess** images are important to improve the system's accuracy

Optimal preprocessing design has been achieved by **finding the combination of typical filters** 

n Classifier

Prediction

Target dataset

X Lack of representability in just a combination

**Our Research Question** 

How can we design an optimal preprocessing filter in pixel-level?

## Methodology: Black-box Filter Optimization

#### Image Basis Decomposition

- First,  $\mathbf{k} \times \mathbf{k}$  local regions will be sampled from the training dataset to calculate the image bases; Let this *N*'sampled matrix be  $X' \in \mathbb{R}^{N' \times k^2}$
- The filter bases are calculated as a decomposed components with the low-rank approximation (the same manner as a sparse modeling)
- This study uses Sparse PCA and Independent Component Analysis (ICA)



#### **Reformulation of the Optimization Problem**

- Assume that the **optimal filter can be represented as a linear form** of calculated dataset's local image bases, a filter f is written as: f = Va: where  $V \in \mathbb{R}^{k^2 \times M}$  is M bases, and  $a \in \mathbb{R}^M$  is a coefficients
- Then the **original**  $k^2c$ -dimensional filter optimization problem can be **relaxed into** *M*-dimensional coefficients optimization

 $\max_{f} R(f) \blacksquare$ 

 $\begin{array}{l} \underset{a}{\text{maximize } R(Va) \ sbj.to \ a_i \in [-1,1]} \end{array}$ 

## Experiments

We applied the proposed preprocessing for two image tasks:

#### 1. Anomaly detection with non-DL model

**Method**: HLAC feature + Subspace method **Dataset**: MVTec Anomaly Detection dataset

Metrics: Validation ROC-AUC score

> The task that **preprocessing have dominant effect** for performance

#### 2. Classification problem with CNN-feature

**Method**: Pretrained-ResNet50 + Linear-SVM **Dataset**: Caltech-101 image dataset

Metrics: Validation F-measure

> n.b., CNNs are optimized for non-filtered images

We compared generalization performance for test data between the typical preprocessing image filters and the proposed method



#### **Pixel-level Design an Optimal filter**

• Let *R* be an expected generalization performance, designing an optimal filter *f* is written as maximize *R*(*f*)



• But this optimization problem is in very high-dimensional space - e.g., the search space of k=15, RGB-colored filter is in the  $\mathbb{R}^{675}$ 

[Our goal] To realize to design the pixel-level optimal filter which maximize the generalization performance for given task

## Designing a Filter as a Linear Combination of Bases

• **Image filtering** is essentially **emphasizing/inhibiting** local patterns - Core idea of *Neocognition*, that is the *origin of modern CNNs* 

[Main idea] To represent a preprocessing filter kernel as a Linear combination of Local image bases (a.k.a., Image atom)



### Injecting "Unit" Filter to the Filter Bases

+ 0.2 \*

- By just adopting decomposed components as a filter bases, the designed filter sometimes works "too hard"
- When the raw images were already sub-optimal, they should be **ignored**
- The "unit" filter, a.k.a., "2-dimensional discrete impulse", is added to the filter bases to ensure the representability of "Do nothing"
  - The unit filter is defined mathematically as...

$$y) = \begin{cases} 1 & (x = y = \lceil k/2 \rceil) \\ 0 & (\text{otherwise}) \end{cases}$$

1(x)

# that means like

## Solving the Coefficient Optimization

- How to maximize the expected generalization performance R?
- There is **no information about R**  $\Rightarrow$  We must solve it as **Black-Box**
- The expected generalization performance is approximated by **result on validation data** (hold-out / K-fold cross validation etc...)

Black-Box optimization algorithms

- Random-search 🧹 Bayesian optimization (e.g., TPE)
- Grid-search V Evolution Strategy (e.g., CMA-ES)

## **Results and Discussion**

Results on MVTec anomaly detection (HLAC+SM) (k = 15, M = 16)

| ROCAUC<br>Task                                                               | Best score<br>on typical | ICA+ES | sPCA+ES | ICA+TPE | sPCA+TPE |
|------------------------------------------------------------------------------|--------------------------|--------|---------|---------|----------|
| Carpet                                                                       | 0.648                    | 0.843  | 0.717   | 0.816   | 0.722    |
| Grid                                                                         | 0.732                    | 0.908  | 0.913   | 0.891   | 0.901    |
| Leather                                                                      | 0.916                    | 0.965  | 0.954   | 0.971   | 0.969    |
| Results on Caltech-101 classification (ResNet-50 + SVM) ( $k = 15, M = 16$ ) |                          |        |         |         |          |
| F1-score                                                                     | No-filter                | ICA+ES | sPCA+ES | ICA+TPE | sPCA+TPE |
| Carpet                                                                       | 0.865                    | 0.875  | 0.839   | 0.882   | 0.832    |

/ The proposed method showed significant improvements not only for HLAC+SM but also for CNN, that is very sensitive case

> We aim to apply the method to non-image tasks, e.g., 1D-signals

The proposed method can be a leading preprocessing design way because of its performance and model-data-agnostic property

