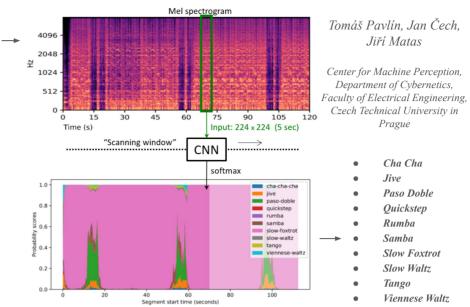

Ballroom Dance Recognition from Audio Recordings



Step 1 - convert the audio recording to spectrogram

- Spectrogram is frequency-temporal 2D representation of the audio
- Standard representation in speech processing
- The 2D (image) representation allows us to use advanced CNN architectures that have been used for image categorization

Step 2 - cut the spectrogram to segments

- Cut the spectrogram to overlapping segments in sliding window fashion
- The segments are classified independently
- Each segment size is 224 × 224 which corresponds to ~5 seconds (time span)
- Experiments show that ~5 seconds is long enough to predict correct dance style accurately, a dance music is "stationary"

Step 3 - convolutional neural network

- **Dense Convolutional Network** (DenseNet) [Huang, Liu, Van Der Maaten, and Weinberger, 2017]
- Input: spectrogram segment
- Output: probability score, vector of size 10 (number of dance classes) softmax

Step 4 - aggregation of segment results

- To predict samples that are longer than the segment duration of ~5 seconds
- The softmax outputs are averaged by arithmetic mean

Training set

Dance Genre	Count
Cha Cha Cha	711
Jive	490
Paso Doble	112
Quickstep	458
Rumba	658
Samba	721
Slow Foxtrot	421
Slow Waltz	411
Tango	395
Viennese Waltz	281
Total	4655

- private collection of ballroom dance music
- ~4700 audio recordings
- 10 dance classes
- the recordings are ~4 minutes long
- studio quality

Test and validation set

- Audio extracted from public YouTube videos
- We make the dataset publicly available at http://dance.ironbrain.net/testset.zip
- Both datasets are uniform and consist of 10 classes of 6recordings each (provides 60 recordings each)
- The recordings are ~3 minutes long and are in studio quality
- The datasets do not overlap with each other and with training set
- Validation set is utilized for selecting epoch with highest
- Test set is used for testing resulting model only

Results on Youtube test set

Method	Top-1 accuracy	Top-2 accuracy
Our method with aggregation	96.7%	100.0%
Our method without aggregation	92.2%	-

Confusion of similar dances:

- Waltz x Viennese Waltz
- Rumba x Cha-cha-cha

Confusion matrix (without aggregation) 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.00

0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Predicted labe

Experiments

Architecture	Top-1 accuracy	Top-2 accuracy	Top-1 without aggregation
VGG 16	25.0%	41.7%	24.8%
ResNet-18	96.7%	100.0%	89.9%
ResNeXt-50 $32x4d$	95.0%	100.0%	89.6%
DenseNet 161	96.7%	100.0%	92.8%

Raseline:

- hand-crafted features classifier
- relies on hand-crafted audio features instead of a spectrogram
- classification using simple SVM
- accuracy 40%

Configuration	Top-1 accuracy	Top-2 accuracy	Top-1 without aggregation
DenseNet-TL-C	63.3%	76.7%	42.9%
DenseNet-TL-DB4 (half)	80.0%	85.0%	62.7%
DenseNet-TL-DB4 (full)	83.3%	91.7%	64.5%
DenseNet-TL-DB4-N (n=24)	70.0%	85.0%	62.0%
DenseNet-TL-DB4-N (n=48)	76.7%	80.0%	63.3%
DenseNet-TL-DB4-N (n=72)	75.0%	86.7%	64.5%
DenseNet-FT	96.7%	100.0%	92.8%
DenseNet-RW	95.0%	100.0%	91.3%
DenseNet-RW-1C7x7	93.3%	100.0%	89.2%
DenseNet-RW-1C16x3	93.3%	100.0%	88.2%
DenseNet-RW-1C40x3	91.7%	98.3%	88.2%

Cross-dataset tests

Dataset	Top-1 accuracy	Top-2 accuracy	Top-1 without aggregation
Extended ballroom	93.9%	97.5%	86.6%
YouTube test set	96.7%	100.0%	92.2%
Dance competitions	87.9%	98.6%	70.6%
StarDance	68.0%	78.0%	45.2%
Low Quality Recordings	72.7%	86.7%	58.0%

Extended ballroom

- publicly available dataset
- 4180 recordings
- each recording is 30 seconds long

YouTube test dataset

- $6 \times 10 = 60$ recordings

Dance competitions

- 360 recordings
 - extracted from YouTube videos of dance competitions of World DanceSport Federation (WDSF)

StarDance

- extracted from 10th season of Czech TV show similar to Dancing with the Stars
- popular music
- 50 recordings

Low Quality Recordings

- recorded using mobile phone camera in dance competitions
- low audio quality (echo, people applauding, dancers steps)
- 128 recordings