$Parallel\,Network\,to\,Learn\,Novelty\,from\,the\,Known$

Shuaiyuan Du, Chaoyi Hong, Zhiyu Pan, Chen Feng*, and Zhiguo Cao

Novelty Detection

Recognize unseen classes, or technically, those classes never appearing during training.

PN for closed-set Training

Feature Extractor

Generate Pseudo-novel Sub-tasks.

- Use only the training set to create sub-tasks of pseudo-novelty detection.
- All training classes share equal possibility of being pseudo-novel during training.

• "Parallel" denotes multiple branches of

Key Idea

known or pseudo-novel

real novel () classification space

- Classic classification network cannot discriminate novel samples resembling training classes.
- We divide the training set to construct subtasks of pseudo-novelty detection and learns the concept of "novelty".

Comparison & Ablation Study					
Method	Stanford Dogs	Caltech- 256	Founder- Type200	Mean	
FT(baseline)	0.766	0.827	0.841	0.811	
One-class SVM	0.542	0.576	0.627	0.582	
KNFST	0.649	0.743	0.870	0.754	
Local KNFST	0.652	0.712	0.673	0.679	
OpenMax	0.776	0.831	0.852	0.820	
FT(c+C)	0.780	0.848	0.754	0.794	
Deep Novelty	0.825	0.869	0.893	0.862	
Ours (ME)	0.833	0.882	0.871	0.862	
Ours (KLD)	0.829	0.873	0.901	0.868	

co-working FC classifiers.

• The classes acting as "pseudo-novel" to train each FC are unoverlapped.

Multi-Branch Ensemble for Open-set Testing

Parallel classifier layers

State-of-the-art and robust.

Features	Classifier	AUC	imp.
baseline	baseline	0.689	+0.000
ours	baseline	0.709	+0.020
baseline	ours	0.725	+0.036
ours	ours	0.829	+0.140

In our structure, the feature and classifier benefit from each other.

2: KL-Divergence based Ensemble Measure the Kullback-Leibler (KL) divergence between the ideal output of known classes and any test sample.

Analysis Experiment

Compared with the baseline, our PN

- builds larger margin between visually similar classes.
- shows better discriminative power in terms of both feature and classifier output.
- shows great difference between the integral distributions of known (triangle) and real novel (square).