
ParallelNetworktoLearnNovelty fromtheKnown
Shuaiyuan Du, Chaoyi Hong, Zhiyu Pan, Chen Feng∗, and Zhiguo Cao

Novelty Detection

Novelty

Known

Recognize unseen classes, or technically, those
classes never appearing during training.

Key Idea

known or pseudo-novel real novel classification space

• Classic classification network can-
not discriminate novel samples resem-
bling training classes.

• We divide the training set to construct
subtasks of pseudo-novelty detection
and learns the concept of “novelty”.

Comparison & Ablation Study
fine-grained one containing 200 classes of dogs with 20,580
images. FounderType200 contains 200 font types with 6,763
synthesized Chinese characters. For all datasets, we sort the
class names alphabetically and pick the first 50% as known,
and the remaining as real novel. We bisect the samples within
known classes for training and test (similar to the protocol
in [4]). All real novel samples constitute part of the test set.
To clarify, we have only known classes for training (closed
set), but both known and novel ones for test (open set).

b) Compared methods: We compare PN with several
representative state-of-the-art methods, including FT (Fine-
tune) [2], One-class SVM [21], Local KNFST [13], KN-
FST [11][12], OpenMax [10], FT(c+C) [4], and Deep Nov-
elty [4]. For fair comparisons, all methods apply VGG16 [2]
as feature backbone. Here we briefly introduce all compared
methods:

• FT finetunes the pre-trained VGG16 on the train set of
known classes and sets threshold for the output confi-
dence scores for inference.

• FT(c+C) uses extra out-of-distribution data (not belong-
ing to any known or tested novel classes) for finetuning.

• One-class SVM applies the same training set with FT and
leverages the highest response in the output for inference.

• KNFST first calculates the inner product between fea-
tures of the test sample and all training data via the his-
togram intersection kernel method, and then sets thresh-
old on the result for inference.

• Local KNFST selects 600 local regions nearest to the
test sample (instead of all training data in KNFST) to
calculate the inner product.

• OpenMax exploits the penultimate layer of the network
to directly predict the probability of a test sample being
a novel class.

c) Implementation details: Our PN is optimized by
Adam. The learning rate is initially set to 10−5 and decreased
by 10 times every 15 epochs.

d) Evaluation metric: We adopt the area under the
receiver operating characteristic curve (AUC) as the evaluation
metric. The receiver operating characteristic curve (ROC) takes
the false positive rate as the x-axis and true positive rate as the
y-axis. The ROC remains stable even with the ever-changing
distribution of known and novel samples in the test set [8],
henceforth the same to AUC.

e) Threshold setting: Since we apply AUC as evaluation
metric, we need no threshold for experimental comparisons.
Here we give an alternative threshold setting method for real
applications. First, we could sample 10% images within each
known class as validation set not overlapped with training
and test. Then the threshold is determined by adjusting PN
to achieve predefined classification accuracy (e.g. 80%) on
the validation set. The threshold setting may vary in different
application scenarios, which shows interesting future research.

TABLE II
COMPARISONS WITH THE STATE-OF-THE-ARTS ON THREE PUBLIC
DATASETS (COLUMNS). PN OUTPERFORMS THE OTHER METHODS.

Method Stanford Caltech- Founder- MeanDogs 256 Type200
0.766 0.827 0.841 0.811
0.542 0.576 0.627 0.582
0.649 0.743 0.870 0.754
0.652 0.712 0.673 0.679
0.776 0.831 0.852 0.820
0.780 0.848 0.754 0.794

FT(baseline)
 One-class SVM

 KNFST
 Local KNFST

 OpenMax
FT(c+C)

Deep Novelty 0.825 0.869 0.893 0.862
Ours (ME) 0.833 0.882 0.871 0.862

Ours (KLD) 0.829 0.873 0.901 0.868

B. Comparison with the State-of-the-arts

Here we comprehensively compare PN with the state-of-
the-arts on three public datasets (Table II). For the compared
methods, we refer to the results from [4]. We reproduce some
methods [2][4][21], and report the higher results between our
reproduction and [4].

FT acts as baseline for all methods. From the results, we
can see that one-class SVM performs unfavorably (the worst
in all compared methods). It may be attributed to that class
space seems quite large and complicated for one-class SVM:
e.g., the fewest class numbers in the benchmarks yield 120
(Stanford Dogs). KNFST and Local KNFST similarly fails
to establish a discriminative classification space when dealing
with a complex dataset, which has already been validated in
[13]. OpenMax obtains comparatively better results than the
baseline. We conjecture that its OpenMax layer for open world
may catch the differences between the known and novel. The
assistance from open world can also be observed with FT(c+C)
which incorporates the out-of-distribution data in the cases of
Stanford Dogs and Caltech256. The degradation in Founder-
Type200 may be caused by that the additional data obey a
different distribution from Foundertype200. Deep Novelty well
addresses this difference and obtains better performance.

On all three benchmarks, our PN obtains 4% to 6% im-
provements (absolute gain) over the baseline and achieves
the best among all compared methods. This advantage on
whether coarse-grained (Caltech256), fine-grained (Stanford-
Dogs) or synthesized (FounderType200) datasets shows our
PN’s generality and robustness. Compared with FT(c+C) and
Deep Novelty which both leverage out-of-distribution data, PN
even performs better without any additional data. This may
reveal that PN has mined the concept of “novelty” with limited
samples and generalizes better to new unseen data.

The comprehensive advantage of PN’s two ensemble ways
justifies the parallel design. We apply KLD for further exper-
iments with its consistent advantage.

C. Analysis Experiments

We conduct ablation study and other analysis experiments to
help understand PN’s internal working mechanism. We focus
on Stanford Dogs for simplicity.

State-of-the-art and robust.

Feature Output

V
G

G
16

Parallel N
etw

ork

Papillon

Shetland sheepdog

real novel class
known class

Output of Branches in Parallel Network

real novel

output of branch1

known

output of branch2
output of branch3

Fig. 5. Exemplified visualization to show PN’s discriminative power compared with baseline. We visualize both features (the last convolutional layers of
the feature backbones in baseline and PN) and outputs (for baseline, PN and its multiple branches) using t-SNE [26]. Two classes from Standford Dogs are
concerned: Papillon (triangles) as known class and Shetland sheepdog (squares) as real novel. Papillon is considered pseudo-novel for branch 1 and known
for the other two during training. Results show that PN learns more discriminative feature space and classification space.

TABLE III
ABLATION STUDY ON PN’S TWO MODULES OF FEATURE LEARNING AND

CLASSIFICATION. THE RESULTS JUSTIFY OUR PROPOSITION.

Features Classifier AUC imp.
baseline baseline 0.689 +0.000

ours baseline 0.709 +0.020
baseline ours 0.725 +0.036

ours ours 0.829 +0.140

a) Ablation study on feature learning and parallel
classifiers: PN consists of feature module and multi-branch
parallel classifiers. To study how these two parts affect PN’s
performance, we compare four settings of “features plus clas-
sifiers” as in Table III. The baseline refers to FT in Sec. IV-A3.
For the second and third settings, we freeze the feature
modules and finetune the classifiers for final predictions.

Compared with FT, the second setting (PN’s feature module
plus baseline’s classifier) obtains improvement by 2% (abso-
lute gain). This may demonstrate that PN has learned more
discriminative features to be a good start for further learning.

Compared with FT, the third setting (baseline’s feature
module plus PN’s parallel classifiers) obtains an increased
performance by 3.6% (absolute gain). This result highlights
the discriminative power of our parallel classifiers even with
a relatively weaker feature backbone.

The proposed PN, i.e., the combination of these two func-
tional parts (feature learning and parallel classifiers), yields a
significant improvement by 14% (absolute gain) over baseline.
This further validates the contributions of the two parts.

b) Visualization for PN’s discriminative power: Here we
visualize the outputs and the features of PN to qualitatively
illustrate PN’s discriminative power. Within the training and
test sets for already-learnt PN, we pick up two similar classes
for exemplification: Papillon as known and Shetland sheepdog

3Here we report all results obtained by ourselves. This is why the baseline
result differs from that in Table II.

Dimension alignment
0

0

0

'0' paddingOriginal output

Fig. 6. Output alignment. Since each branch is trained with different set
of known and pseudo-novel classes, the same dimensions across branches
may represent different classes. We extend all output dimensions to the full
all-class ones with zeros padding the vacant positions.

as real novel. Note that during training, Papillon is considered
pseudo-novel for branch 1 and known for the other two. Since
the branches are trained with different sets of known and
pseudo-novel classes, their output dimensions present different
physical meanings. E.g., output for branch 1 has no Papillon
dimension since it is regarded as pseudo-novel, as opposed
to the outputs for the other two branches. In order to align
the outputs for visualization, we extend the outputs to full all-
class dimensions with padded zeros (Fig. 6). We then visualize
the outputs in the baseline, PN, and its three-branch parallel
classifiers (Fig. 5). Compared with baseline, we can observe
that, each branch tends to pull apart the two classes, i.e., to
create greater margin between the two classes. Even for branch
1 which takes Papillon as pseudo-novel class, there exists a
discriminable margin between the two classes. Complete PN
(ensemble of all branches) shows more discriminative power
in both feature and output space where intra-class samples
gather more tightly and stay away from the inter-class ones.

c) Impact of the number of parallel branches n: To test
what number of parallel branches n is the most effective, we
train several models with 2, 3, 4, 5, 10 branches separately (3 is
the default setting). From the results in Fig. 7, we can see that
PN obtains the highest performance with the default n = 3.
When n is set lower to 2, the AUC drops by 3.2%. Recall that
the number of pseudo-novel classes of each branch is |L|/n
(Eq. 4), and that of training known classes is |L| − |L|/n.

In our structure, the feature and classifier
benefit from each other.

PN for closed-set Training

B

A

C
Encoder

Feature Extractor Parallel classifier layers

Closed Set for Training

（1） （2） （3）

Data splitting
Training known Training pseudo-novel

B

A

C

A B N

A B N

A B N

Generate Pseudo-novel
Generate Pseudo-novel Sub-tasks.

• Use only the training set to create sub-tasks
of pseudo-novelty detection.

• All training classes share equal possibility of
being pseudo-novel during training.

B

A

C
Encoder

Feature Extractor Parallel classifier layers

Closed Set for Training

（1） （2） （3）

Data splitting
Training known Training pseudo-novel

B

A

C

A B N

A B N

A B N

Generate Pseudo-novel
Train PN Within Closed Set

• “Parallel” denotes multiple branches of
co-working FC classifiers.

• The classes acting as “pseudo-novel” to
train each FC are unoverlapped.

Multi-Branch Ensemble for Open-set Testing

known S1 novelty-dim

of branches

novel S2 novelty-dim

of branches

novel S3
(similar to known)

novelty-dim

of branches

Samples within different classes shall have different output distributions.
(Totally three classes in this example.)

Output

max
pooling

1-Novel

Novel

N

Y

DME
≥

Threshold

Known

S1

S2

S3

low
score

high
score

middle
score

1: Multiplicative Ensemble
Multiply the novel dimensions in all classifiers.

2: KL-Divergence based Ensemble
Measure the Kullback-Leibler (KL) di-
vergence between the ideal output of
known classes and any test sample.

ps

qs

the ideal output
of known q

sort

sort

Output 1-Novel

Novel

N

Y

DKL(ps|qs)
≥

Threshold

Known S1

S2

S3

low
score

high
score

middle
score

ideal

DKL

Analysis Experiment
Feature Output

V
G

G
1

6
P

a
ra

llel N
etw

o
rk

Papillon

Shetland sheepdog

real novel class

known class

Output of Branches in Parallel Network

real novel

output of branch1

known

output of branch2

output of branch3

Compared with the baseline, our PN

• builds larger margin between visually similar classes.
• shows better discriminative power in terms of both feature and classifier output.
• shows great difference between the integral distributions of known (triangle) and real novel (square).

