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PN for closed-set Training

Novelty Detection

————————————————————— ~ Generate Pseudo-novel Sub-tasks.

\
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e Use only the training set to create sub-tasks
of pseudo-novelty detection.

Novelty £ e All training classes share equal possibility of

being pseudo-novel during training.

Recognize unseen classes, or technically, those
classes never appearing during training.

Train PN Within Closed Set

ﬁarallel classifier layeﬁ

I e “Parallel” denotes multiple branches of
En co-working FC classifiers.
coder I
/ — e The classes acting as “pseudo-novel” to

train each FC are unoverlapped.

Multi-Branch Ensemble for Open-set Testing
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Samples within different classes shall have different output distributions.
(Totally three classes in this example.)

novelty-dim

. . . of branches
e (Classic classification network can-

not discriminate novel samples resem-
bling training classes.

e We divide the training set to construct
subtasks of pseudo-novelty detection
and learns the concept of “novelty”.
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1: Multiplicative Ensemble
Multiply the novel dimensions in all classifiers.

> ma
Local KNFST  0.652 0.712 0.673 0.679 _pooling
OpenMax  0.776 0.831 0.852 0.820
FT(c+C)  0.780 0.848 0.754 0.794 - .
Deep Novelty ~ 0.825 0.869 0.893 0.862
Ours (ME) _ 0.833 0.882 0.871 0.862 e
uitpu -INOVe
Ours (KLD)  0.829 0.873 0.901 0.868 Output | |I-Ne .
State-of-the-art and robust. " -
2: KL-Divergence based Ensemble
1 I . . - high
Features  Classifier  AUC 1mp. Measure the Kullback-Leibler (KL) di-
baseline baseline 0.689 +0.040 vergence between the ideal output of
ours baseline 0.709 +0.020 & b
baseline OUTS 0.725 10.036 known classes and any test sample. - 0

ours

ours

0.829

+0.140

In our structure, the feature and classifier
benefit from each other.
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Compared with the baseline, our PN

e builds larger margin between visually similar classes.
e shows better discriminative power in terms of both feature and classifier output.

e shows great difference between the integral distributions of known (triangle) and real novel (square).




