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Motivation
In Continual Learning (CL), we train models that retain
past knowledge while learning new tasks

argmin
θ

tc∑
t=1
Lt, Lt , E(x,y)∼Dt

[
`(y, fθ(x))

]
.

Rehearsal CL methods use a memory buffer B to store
and replay previously seen examples. The simplest solution
in this class is Experience Replay (ER), which interleaves
replay items with the current training batch.

L′ = E(x,y)∼Dtc

[
`(y, fθ(x))

]
+ E(x,y)∼B

[
`(y, fθ(x))

]
.

However, ER is affected by some drawbacks:

l repeated optimization of a small buffer: overfitting;
u implicit bias of the network towards newer tasks [3];
n reservoir sampling [2] is not always ideal (e.g.: if the

buffer is small, entire classes could be left out).

We address this issues by applying some tricks.

Tricks
l Independent Buffer Augmentation (IBA)

We store not aug-
mented input items in
B and augment them
independently when
drawn for replay.
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u Bias Control (BiC)
As done in [3], we add a bias correction layer to the model
which compensates the kth output logit ok with learned pa-
rameters α, β as follows:

qk =

α · ok + β if k was trained in the last task
ok otherwise

BiC is trained at the end of each task on B.

Tricks
u Exponential LR Decay (ELRD)

We progressively slow learning down in later tasks. Given
an initial learning rate lr0, we set it to

lrj = lr0 · γNex

for the jth example, where Nex is the number of examples
seen so far, and γ is a hyper-parameter s.t. γ ≈ 6−1/Nex .

n Balanced Reservoir Sampling (BRS)
Probability of reservoir leaving > 1 class out of B ≈ 36.7%
(for |B| ≈ C). We propose a simple modification to it:
inserted samples must replace a random item from the
most represented class.
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n Loss-Aware Reservoir Sampling (LARS)
We additionally modify reservoir to retain themost mean-
ingful examples depending on its corresponding training
loss (similar to GSS [1], but much faster to compute).

Applicability to other methods
IBA can be easily applied to other rehearsal methods.
BiC and ElrD are also effective in reducing the bias towards
the last task for Regularization CL methods.
To better account for the discrepancy among old tasks in
them, we modify BiC to apply distinct offsets to logits
from each task (Complete Bias Correction – CBiC).
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Results
The incremental application of the proposed tricks enhances
the final accuracy of ER over competing methods.
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ER with tricks outperforms state-of-the-art reharsal meth-
ods on multiple settings at multiple buffer sizes.
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