

Motivation

In **Continual Learning** (CL), we train models that **retain** past knowledge while learning new tasks

$$\underset{\theta}{\operatorname{argmin}} \sum_{t=1}^{t_c} \mathcal{L}_t, \quad \mathcal{L}_t \triangleq \mathbb{E}_{(x,y) \sim D_t} \Big[\ell(y, f_{\theta}(x)) \Big]$$

Rehearsal CL methods use a memory buffer \mathcal{B} to store and replay previously seen examples. The simplest solution in this class is **Experience Replay** (ER), which interleaves replay items with the current training batch.

$$\mathcal{L}' = \mathbb{E}_{(x,y)\sim\mathcal{D}_{t_c}} \Big[\ell(y, f_{\theta}(x)) \Big] + \mathbb{E}_{(x,y)\sim\mathcal{B}} \Big[\ell(y, f_{\theta}(x)) \Big].$$

However, ER is affected by some drawbacks:

• repeated optimization of a small buffer: **overfitting**; \bullet implicit **bias** of the network towards **newer tasks** [3]; **reservoir sampling** [2] is not always ideal (*e.g.*: if the buffer is small, entire classes could be left out).

We address this issues by applying some **tricks**.

• Independent Buffer Augmentation (IBA) Data

We store not augmented input items in \mathcal{B} and augment them independently when drawn for replay.

◆ Bias Control (BiC)

As done in [3], we add a **bias correction layer** to the model which compensates the k^{th} output logit o_k with learned parameters α , β as follows:

$$q_k = \begin{cases} \alpha \cdot o_k + \beta & \text{if } k \text{ was trained in the lat} \\ o_k & \text{otherwise} \end{cases}$$

BiC is trained at the end of each task on \mathcal{B} .

Rethinking Experience Replay: a Bag of Tricks for Continual Learning P. Buzzega, M. Boschini, A. Porrello, S. Calderara

AlmageLab - University of Modena and Reggio Emilia, Modena, Italy | pietro.buzzega@unimore.it

st task

Tricks

• Exponential LR Decay (ELRD) We progressively **slow learning down** in later tasks. Given an initial learning rate lr_0 , we set it to

$$lr_j = lr_0 \cdot \gamma^{N_{es}}$$

for the j^{th} example, where N_{ex} is the number of examples seen so far, and γ is a hyper-parameter s.t. $\gamma \approx 6^{-1/N_{ex}}$.

Balanced Reservoir Sampling (BRS)

Probability of *reservoir* leaving ≥ 1 class out of $\mathcal{B} \approx 36.7\%$ (for $|\mathcal{B}| \approx C$). We propose a simple modification to it: inserted samples **must replace** a random item from the most represented class.

Loss-Aware Reservoir Sampling (LARS)

We additionally modify *reservoir* to retain the **most meaningful examples** depending on its corresponding **training** loss (similar to GSS [1], but much faster to compute).

Applicability to other methods

IBA can be easily applied to other **rehearsal methods**. **BiC** and **ElrD** are also effective in reducing the bias towards the last task for **Regularization CL methods**. To better account for the discrepancy among old tasks in them, we modify BiC to apply **distinct offsets** to logits from each task (Complete Bias Correction – CBiC).

The incremental application of the proposed tricks enhances the final accuracy of ER over competing methods.

ER with tricks outperforms state-of-the-art reharsal methods on multiple settings at multiple buffer sizes.

- on Mathematical Software, 11, 1985.
- scale incremental learning. CVPR 2019.

Results

References

R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample selection for online continual learning. NeurIPS 2019.

J. S. Vitter. Random sampling with a reservoir. ACM Transactions

Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu. Large