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Abstract
Clustering is a crucial but challenging task in
pattern analysis and machine learning. Re-
cent many deep clustering methods combining
representation learning with cluster techniques
emerged. These deep clustering methods mainly
focus on the correlation among samples and
ignore the relationship between samples and
their representations. In this paper, we pro-
pose a novel end-to-end clustering framework,
namely variational deep embedding clustering
by augmented mutual information maximiza-
tion (VCAMI). From the perspective of VAE,
we prove that minimizing reconstruction loss is
equivalent to maximizing the mutual informa-
tion of the input and its latent representation.
This provides a theoretical guarantee for us to
directly maximize the mutual information in-
stead of minimizing reconstruction loss. There-
fore we proposed the augmented mutual infor-
mation which highlights the uniqueness of the
representations while discovering invariant in-
formation among similar samples. Extensive ex-
periments on several challenging image datasets
show that the VCAMI achieves good perfor-
mance.

Model Formulation
Let X = {xi}Ni=1 be a set of D-dimensional sam-
ples, Z = {zi}Ni=1 be a set of d-dimensional
latent representations and y is a discrete vari-
able representing the category. We denote the
encoder pθ(z|x) that describes the distribution
of the encoded variable. The decoder is de-
fined by qφ(x|z). We let joint distribution
pθ(x, z) = pθ(z|x)p(x), qφ(x, z) = qφ(x|z)q(z),
where pθ(z|x), qφ(x|z) are Gaussian distribu-
tions with trainable network parameters θ, φ re-
spectively, p(x) is the evidence distribution of x
and q(z) is usually the standard Gaussian dis-
tribution.

LV CAMI = LAMI + βLGMM + γLREG,
LAMI = LGMI + λLLMI + αLCMI .

LGMI(θ, ω) = E(x,z)∼p(x)pθ(z|x)[log σ(Tω(x, z))]

+E(x,z) ∼ p(x)p(z)[log(1− σ(Tω(x, z))].

LLMI(θ, ω, ψ) = E(x,z)∼p(x)pθ(z|x)[log σ(Tψ(x, z))]

+E(x,z) ∼ p(x)p(z)[log(1− σ(Tψ(x, z))].

LGMM = Ex∼p(x)

[∑
y

pθ2(y|z) log
pθ1(z|x)
q(z|y)

]

LREG =Ex∼p(x)

[
DKL

(
pθ2(y|z)

∥∥q(y))],
z ∼ pθ1(z|x).

LCMI = max
θ
I(fθ(x), fθ(x

′)).

where σ(T (x)) is a discriminator network.α, β
and γ are constants to balance the contributions
of different terms. We summarize the overall
training process in Algorithm 1.

Clustering performance
Table 1: Clustering performance of different methods on six challenging datasets. The best results are
highlighted in bold. (ACC/NMI).

Dataset MNIST CIFAR-10 CIFAR-100 STL-10 ImageNet-10 Imagenet-dog
Metrics NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC
Kmeans 0.501 0.572 0.087 0.229 0.084 0.130 0.125 0.192 0.119 0.241 0.055 0.105

SC 0.662 0.695 0.103 0.247 0.090 0.136 0.098 0.159 0.151 0.274 0.038 0.111
AE 0.725 0.812 0.239 0.314 0.100 0.165 0.250 0.303 0.210 0.317 0.104 0.185

JULE 0.913 0.964 0.192 0.272 0.103 0.137 0.182 0.277 0.175 0.300 0.054 0.138
DEC 0.771 0.843 0.257 0.301 0.136 0.185 0.276 0.359 0.282 0.381 0.122 0.195
VAE 0.876 0.945 0.245 0.291 0.108 0.152 0.200 0.282 0.193 0.334 0.107 0.179

DEPICT 0.917 0.965 0.237 0.279 0.094 0.137 0.229 0.312 0.242 0.363 0.128 0.219
GAN 0.763 0.736 0.265 0.315 0.121 0.151 0.212 0.298 0.225 0.346 0.121 0.174

DeCNN 0.757 0.817 0.240 0.282 0.092 0.133 0.227 0.299 0.186 0.313 0.098 0.175
DAC 0.935 0.977 0.396 0.522 0.185 0.238 0.366 0.470 0.394 0.527 0.219 0.275
ICC - 0.992 - 0.617 - 0.257 - 0.596 - - - -

DCCM 0.951 0.982 0.496 0.623 0.285 0.327 0.376 0.482 0.608 0.710 0.321 0.383
Ours 0.987 0.995 0.521 0.654 0.301 0.338 0.391 0.512 0.636 0.746 0.375 0.391

Optimization
We conclude that VCAMI objective function
monotonically decreases under the optimization
in Algorithm. 1.

Algorithm 1 Variational Deep Embedding
Clustering by Augmented Mutual Information
Maximization
Input: Unlabelled dataset X = {xi}Ni=1

Parameter: Class number K, α, β and γ
Output: Cluster assignment and embedded
representations
1: while epoch 6Maxiter do
2: for batch x in X do
3: Generate x′ via data augmentation;
4: Computing LGMI ;
5: Computing LLMI ;
6: Computing LCMI ;
7: Computing LGMM ;
8: Computing LREG;
9: Computing LV CAMI ;

10: Update model parameters by backprop-
agation;

11: end for
12: end while
13: return cluster assignment

Conclusion
In this paper, we developed an end-to-end clus-
tering framework, i.e., variational deep embed-
ding clustering by augmented mutual informa-
tion maximization (VCAMI). To extract the
useful representations, we proposed the aug-
mented mutual information, which combines
the mutual information variational estimation
of continuous variables, the mutual information
exact computation of discrete variables, and the
data augmentation techniques. While achieving
excellent clustering performance, the VCAMI
improves the robustness and avoids the degener-
ate solutions. Extensive experiments on several
challenging image datasets show that VCAMI
achieves significant improvement over the state-
of-the-art methods.
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Results Analysis

Table 2: Ablation study of VCAMI on the CIFAR-
10 datasets.

Dataset CIFAR-10
Metrics NMI ACC ARI
LDMI 0.213 0.294 0.184
LCMI 0.397 0.576 0.373
LAMI 0.497 0.632 0.401

LV CAMI 0.517 0.654 0.426
Dataset ImageNet-10
Metrics NMI ACC ARI
LDMI 0.273 0.361 0.251
LCMI 0.537 0.641 0.497
LAMI 0.611 0.726 0.553

LV CAMI 0.632 0.742 0.573

In table 1, several tendencies can be observed
from the clustering results with further analysis.
First, the performance of the clustering meth-
ods based on deep learning is generally supe-
rior to the traditional methods (e.g., K-means,
SC). Secondly, the performance of DCCM and
VCAMI using the data enhancement technique
is better than that of other algorithms. It im-
plies that introducing data augmentation tech-
nology into unsupervised clustering can help the
model to be optimized more reasonably and to
avoid degenerate solutions. More importantly,
both DCCM and VCAMI are dedicated to find-
ing discriminative representations by maximiz-
ing triplet-level mutual information. Different
from DCCM, VCAMI combines the mutual in-
formation estimation between continuous vari-
ables and the exact mutual information compu-
tation between discrete variables to efficiently
obtain the unique and invariant information of
the representations.
In table 2, we observe that extracting invari-
ant information is more helpful for the clustering
task by maximizing mutual information between
similar samples. Combining LDMI and LCMI ,
we can see that LAMI significantly boosts the
clustering performance. The only difference be-
tween LAMI and LV CAMI lies in whether the
Gaussian mixture distribution constraint is im-
posed on the representation or not. We can
see that the Gaussian mixture distribution con-
straint is helpful for the model to extract the
representations with cluster-like structures.


