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Motivation
- Powerful, cumbersome object detectors for mobile devices

- Data communication is critical in edge computing systems

Split Computing

Generalized Head Network Distillation Experiments and Results
3 models: Faster, Mask and Keypoint R-CNNs

- Distill head portion of R-CNNs trained on COCO 2017

- Investigate bottleneck size vs. mean Average Precision

Component-wise Delay Analysis
- 3 delay components:

      local, comm., and edge delays

- Comm. delay is very critical

- Edge delay is negligible 

- Neural filter does not significantly

      increase local delay

Conclusion
- Refined head-network distillation technique

- Introduced neural filter to eliminate "empty" images

- Reduced latency of R-CNNs on resource-limited systems

- Code and trained model are publicly available:

https://github.com/yoshitomo-matsubara/hnd-ghnd-object-detectors

Mobile device Edge serverWireless & wired communications

- Intermediate between mobile and edge computing

- Getting popular for resource-limited systems

Distill head network redesigned to introduce bottleneck
training cost as tail model is pretrained

time to design student models

computational load on mobile device

data size to be transferred to edge server

Save

"Bottleneck"

(Splitting point)

No need to offload computation for "empty" images

Quantize bottleneck tensor for further compression

vs. Pure offloading
- High gain as data rate is limited

- Neural filer increases the gain

vs. Local computing
    More effective in

        wider range of data rage    
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"Is there any object of interest?"

e.g., Person keypoint detection task in COCO dataset

vs.
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BBox m AP: Faster R-CNN with HND
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Mask m AP: Mask R-CNN with HND
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Outperform the original HND

    (baseline) in terms of mAP

 

Save  ~94% of tensor size

    at a cost of ~1pt mAP loss

Save 36% data size

    compared to JPEG
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