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Motivation Split Computing
- Powerful, cumbersome object detectors for mobile devices - Intermediate between mobile and edge computing
- Data communication is critical in edge computing systems - Getting popular for resource-limited systems
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Generalized Head Network Distillation Experiments and Results
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Bounding Box / Mask mAPs
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e.g., Person keypoint detection task in COCO dataset ours 11 0358|037 0337|083 034 compared to JPEG
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vs. Pure offloading vs. Local computing
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Component-wise Delay Analysis Conclusion

== Comm. Delay
== Edge Delay

- Introduced neural filter to eliminate "empty" images
- Reduced latency of R-CNNs on resource-limited systems
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local, comm., and edge delays
- Comm. delay is very critical
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- 3 delay components: | | = a0 - Refined head-network distillation technique




