
Neural Compression and Filtering for Edge-assisted
Real-time Object Detection in Challenged Networks
Neural Compression and Filtering for Edge-assisted
Real-time Object Detection in Challenged Networks

(University of California, Irvine)

Yoshitomo Matsubara
yoshitom@uci.edu

Marco Levorato
levorato@uci.edu

Motivation
- Powerful, cumbersome object detectors for mobile devices

- Data communication is critical in edge computing systems

Split Computing

Generalized Head Network Distillation Experiments and Results
3 models: Faster, Mask and Keypoint R-CNNs

- Distill head portion of R-CNNs trained on COCO 2017

- Investigate bottleneck size vs. mean Average Precision

Component-wise Delay Analysis
- 3 delay components:

 local, comm., and edge delays

- Comm. delay is very critical

- Edge delay is negligible

- Neural filter does not significantly

 increase local delay

Conclusion
- Refined head-network distillation technique

- Introduced neural filter to eliminate "empty" images

- Reduced latency of R-CNNs on resource-limited systems

- Code and trained model are publicly available:

https://github.com/yoshitomo-matsubara/hnd-ghnd-object-detectors

Mobile device Edge serverWireless & wired communications

- Intermediate between mobile and edge computing

- Getting popular for resource-limited systems

Distill head network redesigned to introduce bottleneck
training cost as tail model is pretrained

time to design student models

computational load on mobile device

data size to be transferred to edge server

Save

"Bottleneck"

(Splitting point)

No need to offload computation for "empty" images

Quantize bottleneck tensor for further compression

vs. Pure offloading
- High gain as data rate is limited

- Neural filer increases the gain

vs. Local computing
 More effective in

 wider range of data rage

FPNBackbone

L0 L1 L2 L3 L4 RPN RoI
Heads

Class(es) and
Bounding Box(es)

FPNBackbone

L0 L2 L3 L4 RPN RoI
Heads

Class(es) and
Bounding Box(es)

L1

SSE LossesImage

Teacher

Student

Filtering out "Empty" Images by Neural Filter

Backbone

L0 L2 L3 L4

NF

L1

CE Loss

Image

"Is there any object of interest?"

e.g., Person keypoint detection task in COCO dataset

vs.

0.2 0.4 0.6 0.8 1.0

Norm alized Bot t leneck Tensor Size

0.32

0.33

0.34

0.35

0.36

0.37

0.38

B
o

u
n

d
in

g
 B

o
x

 /
 M

a
sk

 m
A

P
s

BBox m AP: Faster R-CNN with HND

BBox m AP: Mask R-CNN with HND

Mask m AP: Mask R-CNN with HND

BBox m AP: Faster R-CNN with Ours

BBox m AP: Mask R-CNN with Ours

Mask m AP: Mask R-CNN with Ours

Outperform the original HND

 (baseline) in terms of mAP

Save ~94% of tensor size

 at a cost of ~1pt mAP loss

Save 36% data size

 compared to JPEG

0 2 4 6 8 10
Data Rate [Mbps]

0

2

4

6

8

G
a

in
 w

.r
.t

.
Lo

ca
l

C
o

m
p

u
ti

n
g Keypoint R-CNN

Keypoint R-CNN with Neural Filter

0 2 4 6 8 10
Data Rate [Mbps]

1.0

1.2

1.4

1.6

1.8

G
a

in
 w

.r
.t

.
P

u
re

 O
ff

lo
a

d
in

g Keypoint R-CNN with BQ

Keypoint R-CNN with BQ & Neural Filter

0 2 4 6 8 10
Data Rate [Mbps]

0

1

2

3

4

5

6

7

8

G
a

in
 w

.r
.t

.
Lo

ca
l

C
o

m
p

u
ti

n
g Faster R-CNN with BQ

Mask R-CNN with BQ

Keypoint R-CNN with BQ

0 2 4 6 8 10
Data Rate [Mbps]

0.9

1.0

1.1

1.2

1.3

1.4

1.5

G
a

in
 w

.r
.t

.
P

u
re

 O
ff

lo
a

d
in

g Faster R-CNN with BQ

Mask R-CNN with BQ

Keypoint R-CNN with BQ

FPNBackbone

L2 L3 L4 RPN RoI
Heads

1L0 L

FPNBackbone

L0 L1 L2 L3 L4 RPN RoI
Heads

vs.

Image

Bottleneck

Edge Computing

(Pure Offloading)

Split Computing

Total inference time

Total inference time

LC PO PO PO POSC SC SC SCSCNF SCNF SCNF SCNF

1 Mbps 2 Mbps 3 Mbps 4 Mbps

0.0

0.5

1.0

1.5

2.0

T
o

ta
l

In
fe

re
n

ce
 T

im
e

 [
se

c]

98%

68%

52% 50%

37%

29%
34%

27%
21%

26%
22%

17%

Local Delay

Com m . Delay

Edge Delay

