Goal: Achieve temporally consistent geolocalization on map by learning motion trajectory

Contributions:
- Recurrent neural network for modeling motion trajectory (distance + direction)
- Hypothesis generation and pruning for topologically consistent geolocalization

Implication: An affordable AI system to geolocalize position only through self-motion information

Summary

- Methodology
 - Learning Motion Trajectory using RNN
 - Topological Consistent Prediction using Hypothesis Generation and Pruning

Experiments & Results

- Synthetic Path Generation and Training
 - Topological Map: 40 nodes, 61 edges
 - Trajectory Length: 10 nodes
 - All Trajectories: 1753
 - All Classes: 81
 - Input Feature Space: 20
 - Training Trajectories: 17536
 - Training Output Classes: 61

- Real Trajectory Generation and Testing

- Consistent Localization Result