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Pixel-wise accuracy

• IoU, F1-DICE, Precision, Recall

Topological accuracy

• Completeness, Correctness, Quality [8]

Predictions are often more consistent and better localized than labels

• Injecting predictions as ground truth in losses using bootstrapping [7]
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High-resolution aerial images are expensive to annotate

• Large scope or high definition: from 1m/pixel to 5cm/pixel

• Many objects: cars, trees, parking places

• Small details: lane-markings, walls, danger-areas

• Frequent occlusion: vegetation, buildings, shadows

Roads are complex objects

• Types diversity: streets, highways, dirt paths

• Topology complexity: shape, width, connectivity

• Similarity to other objects: parking lots, sidewalks, bikeways

Large-scale datasets trade-off quality for quantity

• With inconsistencies from OpenStreetMap [1]

• With inaccurate polylines [2]

• With incomplete ground truths [3]

Examples of label noise and its effect on predictions

• (a-f) Triplets of RGB, confusion and probability maps of our baseline model

• RGB: 1m/pixel satellite images from [1]

• Confusion Maps: true positives, false negatives, false positives

• Probability Maps: pixel-wise detection of roads in 0-100%

Labeling Roads in Aerial Images

Fully-convolutional neural networks (FCNNs)

• Fine-grained segmentation: need for dedicated architectures

• U-Nets [4] are state-of-the-art

• Shallow architectures used for fast training in challenges

• Deep architectures used to leverage large-scale data

Proposing U-Nets with ResNet [5] and DenseNet [6] backbones

Extracting Roads in Aerial Images

Noise-Aware Loss Functions

Introduction of synthetic noise as data augmentation during training

• Improving the resistance towards label errors

• Using different noise types with gradual amplitudes:

Reinforcing Noise-Resilience

Results on noisy datasets: Massachusetts Roads [1] and DeepGlobe [3]

Qualitative prediction improvements on MA (top) and DG (bottom)

Experiments on Road Datasets

Measuring Road Segmentation Quality

The training labels are not entirely trustworthy

Diagram of the Dense-U-Net-121 architecture
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The test labels are also noisy, it affects the metrics evaluation!

RGB Baseline confusion Noise-aware confusion


