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_abeling Roads in Aerial Images Noise-Aware Loss Functions

High-resolution aerial images are expensive to annotate
 Large scope or high definition: from 1m/pixel to 5cm/pixel
* Many objects: cars, trees, parking places

« Small detalls: lane-markings, walls, danger-areas

* Frequent occlusion: vegetation, buildings, shadows

Roads are complex objects

Oberpfaffenhofen, Germany Graz University of Technology (TUG) Berlin, Germany

Predictions are often more consistent and better localized than labels

* Injecting predictions as ground truth in losses using bootstrapping [/]
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» Types diversity: streets, highways, dirt paths
» Topology complexity: shape, width, connectivity
« Similarity to other objects: parking lots, sidewalks, bikeways

|_arge-scale datasets trade-off quality for quantity
* With inconsistencies from OpenStreetMap [1]

» With inaccurate polylines [2]

* With incomplete ground truths [3]

Examples of label noise and its effect on predictions

Reinforcing Noise-Resilience

Introduction of synthetic noise as data augmentation during training
* Improving the resistance towards label errors
 Using different noise types with gradual amplitudes:
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* (a-f) Triplets of RGB, confusion and probability maps of our baseline model

» Confusion Maps: true positives, false negatives, false positives
* Probability Maps: pixel-wise detection of roads in 0-100%

« RGB: 1m/pixel satellite images from [1] Measuring Road Segmentation Quality

Pixel-wise accuracy .
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Topological accuracy
« Completeness, Correctness, Quality [8]
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A The training labels are not entirely trustworthy

Extracting Roads In Aerial Images

Fully-convolutional neural networks (FCNNSs)

* FiIne-grained segmentation: need for dedicated architectures
* U-Nets [4] are state-of-the-art

» Shallow architectures used for fast training in challenges

* Deep architectures used to leverage large-scale data
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Proposing U-Nets with ResNet [5] and DenseNet [6] backbones
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Experiments on Road Datasets

Results on noisy datasets: Massachusetts Roads [1] and [3]
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Baseline w/ Noise-Aware Loss w/ Synthetic Noise w/ Both

(bottom)

Baseline confusion Noise-aware confusion
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Diagram of the Dense-U-Net-121 architecture
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