Cost-Effective Adversarial Attacks against Scene Text Recognition
Mingkun Yang¹, Haitian Zheng², Xiang Bai¹, Jiebo Luo²
¹Huazhong University of Science and Technology, ²University of Rochester

Introduction

Fig. 1: Illustration of adversarial attack on scene text recognition: given an image, adding an imperceptible perturbation generated by our method makes the prediction different from the original one. Red characters are mis-recognized characters.

➢ Deep neural networks are vulnerable to adversarial attacks.
➢ But there has been no work on adversarial attacks against scene text recognition.

Contribution

➢ The first attempt to investigate the adversarial effects in scene text recognition with attention-based methods.
➢ A novel and effective optimization-based adversarial attack objective function specifically designed for untargeted adversarial attacks against sequential tasks.
➢ Generating adversarial examples with less perceptible perturbation and an even higher attack success rate.

Methodology

Adversarial Attacks for Non-sequential Tasks

\[
\min_\delta \mathcal{D}(I, I + \delta) + c \cdot \mathcal{L}(I + \delta, y') \\
\text{s.t. } I + \delta \in [-1, 1],
\]

Where \(\delta \) is the adversarial perturbation, \(y' \) is the predicted label which is different from the true label \(y \), and \(c \) is the weight to trade off the relative importance of being adversarial and remaining close to the original example. Generally, \(\mathcal{L}(I + \delta, y') = \max(q^y - \max_{y' \neq y} q^{y'}, 0) \).

Adversarial Attacks for Scene Text Recognition

\[
\mathcal{L}(I + \delta, y') = S \cdot H \cdot \sum_{t=1}^{T} \max(q^y_i - \max_{y' \neq y} q^{y'}_i, 0) \\
H = \text{sigmoid}(k \cdot \min_{t} \{d_t\}), \\
S = \prod_{t=1}^{T} p(y_t),
\]

Where \(S \) is the recognition score. The higher \(S \) is, the more difficult to attack, and the larger \(L \) should be. When \(k \) is large enough, \(H \) is a step function and ensures that once any one character is successfully attacked.

Experiments

Fig. 2: Adversarial examples generated by various attack methods.

<table>
<thead>
<tr>
<th>Methods</th>
<th>HITTk</th>
<th>SR</th>
<th>e2 Dist</th>
<th>SVT</th>
<th>e2 Dist</th>
<th>ICO3</th>
<th>e2 Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGD</td>
<td>83.10</td>
<td>1.77</td>
<td>93.97</td>
<td>1.66</td>
<td>80.05</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>MI-FGSM</td>
<td>17.42</td>
<td>3.55</td>
<td>80.98</td>
<td>2.83</td>
<td>57.29</td>
<td>3.98</td>
<td></td>
</tr>
<tr>
<td>FGSM</td>
<td>25.10</td>
<td>75.45</td>
<td>52.70</td>
<td>37.60</td>
<td>33.21</td>
<td>59.33</td>
<td></td>
</tr>
<tr>
<td>o GMC</td>
<td>99.93</td>
<td>1.89</td>
<td>100.00</td>
<td>1.43</td>
<td>100.00</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>with (S)</td>
<td>99.87</td>
<td>1.77</td>
<td>100.00</td>
<td>1.27</td>
<td>100.00</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>with (H)</td>
<td>99.93</td>
<td>1.75</td>
<td>100.00</td>
<td>1.26</td>
<td>100.00</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>Ours (with (S) and (H))</td>
<td>99.93</td>
<td>1.66</td>
<td>100.00</td>
<td>1.17</td>
<td>100.00</td>
<td>1.69</td>
<td></td>
</tr>
</tbody>
</table>

Tab. I: Performance of adversarial attacks over several methods and variants.

References