A voting schema is used to select one complexity measure from each of two families: neighborhood and overlapping.

Subsets with N samples are created randomly from the training set and their dispersions concerning the selected measures are analyzed.

The complexity measure presenting the greatest dispersion in each iteration received one vote.

The algorithm repeats the previous steps M times.

In Figures A and B, the blue dots represent data subsets of a classification problem.

Figure A presents the subsets’ dispersion in the first generation, where each ϕ is a complexity measures and DDV is the diversity in the complexity space.

Figure B shows the subsets after executing PGDCS. We can see them better representing the whole complexity space.

We proposed a new approach for creating a pool of diverse classifiers.

PGDCS uses diversity in both complexity and decision spaces to generate a homogeneous pool of classifier.

As a result, we observed that our proposal outperforms existing approaches in 69.4% of the cases.

Future works will consider different strategies to select the best pool generation.

Compare PGDCS with another methods of pool generation.

An important impact on Dynamic Selection Methods