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INTRODUCTION

> Problem: Diversity is essential in the process of pool generation. Training classifiers on different data subsets is usually the
strategy applied to create homogeneous pools. Challenge: Create data subsets to promote pool diversity and accuracy.

> Objective: A classifier pool generation method guided by diversity estimated on the data complexity and classifier decisions.

POOL GENERATION BASED ON DIVERSITY AND COMPLEXITY SPACES (PGDCS) METHOD
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ANALYSIS OF THE PGDCS METHOD
Second Step (Evolution - Pool Adaptation) Results - General Overview

PGDCS vs Bagging
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Figure B shows the subsets after
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An important impact on Dynamic Selection Methods




