

STARFLOW: A SPATIOTEMPORAL RECURRENT CELL FOR LIGHTWEIGHT MULTI-FRAME OPTICAL FLOW ESTIMATION

Pierre Godet* (https://pgodet.github.io), Alexandre Boulch[†], Aurélien Plyer*, Guy Le Besnerais* * DTIS, ONERA, Université Paris-Saclay, FR-91123 Palaiseau, France; [†] valeo.ai, Paris, France

DGA

ICPR2020, paper #786, poster session T3.1

Previous work on optical flow estimation

- Optical flow is the apparent displacement field between two frames of a video sequence.
- Current state-of-the-art results are obtained with CNNs¹ [7, 6, 3].
- Our work is mainly based on:
- \rightarrow IRR-PWC [3] which iterates on the same weights for the different levels of a multi-scale estimation process.
- ightarrow ContinualFlow [3] which proposes a recurrent multi-frame process by giving the optical flow estimation from the previous frame as an input for the next estimation.

¹ CNNs : Convolutional Neural Networks

Training data, schedule and multi-frame loss

Training data and schedule:

- We first pre-train on **image pairs** from **FlyingChairs** [2].
- We then train on sequences of N=4 images from FlyingThings3D [4].
- ullet We optionally finetune on **sequences of** N=4 **images** from **MPI Sintel** [1] or **KITTI** [5].

Multi-frame and multi-scale loss (over N-1 consecutive image pairs and L scale levels):

$$\mathcal{L} = \frac{1}{N-1} \sum_{t=1}^{N-1} \sum_{l=1}^{L} \alpha_l \left(\mathcal{L}_{\text{flow}}^{t,l} + \lambda \mathcal{L}_{\text{occ}}^{t,l} \right)$$

The STaRFlow architecture

Fig. 1: STaRFlow is reccurrent both in space and time. It is based on a unique SpatioTemporal recurrent cell. The same weights are used for optical flow and occlusion estimation, in the whole network except from the very last layer.

 $Fig. 2: The STaRCell \ uses \ a \ memory \ state \ that \ accumulates \ information \ from \ the \ past \ and \ helps \ the \ estimation \ process \ in \ the \ future. \ To \ do \ so, \ a \ \textbf{learned feature map} \ is \ passed \ from \ one \ time \ step \ to \ the \ next.$

$egin{aligned} extbf{Qualitative results} \ ext{(obtained after training on FlyingChairs} & o ext{FlyingThings3D)} \end{aligned}$

 $Fig.\ 3:$ Results on a sample from Sintel Training.

 ${\ensuremath{{\mbox{\scriptsize Fig. 4:}}}}$ Results on real data, from the nuScenes dataset.

Ablation study

26.1.1	Cat.	Sintel Clean [px]			Sintel Final [px]			KIT	ΓΙ 2015	Parameters	
Method		all	noc	occ	all	noc	occ	epe-all	Fl-all	number	relative
Without joint occlusion estimation.											
Backbone (PWC-Net [7])	2F	2.74	1.46	16.48	4.18	2.56	21.70	11.75	33.20 %	8.64M	0 %
Backbone + TRFlow	MF	2.47	1.41	13.97	4.01	2.52	20.00	11.27	33.77~%	8.68M	+0.5 %
Backbone + TRFeat	MF	2.45	1.44	13.36	3.76	2.46	17.82	9.94	$32.12\ \%$	12.31M	+42.5~%
With joint occlusion estimation.											
Backbone	2F	2.46	1.32	14.82	3.96	2.47	20.06	10.58	31.28 %	8.68M	+0.5 %
Backbone + TRFlow	MF	2.17	1.23	12.33	3.90	2.50	19.11	10.82	32.51~%	8.73M	+1.0 %
${\bf Backbone + TRFeat}$	MF	2.09	1.21	11.63	3.43	2.24	16.24	8.79	28.18 ~%	12.38M	+43.3~%
With joint occlusion estimation and spatial recurrence.											
Backbone	2F	2.29	1.20	14.03	3.72	2.32	18.77	10.74	31.35 %	3.37M	− 61.0 %
Backbone + TRFlow	MF	2.20	1.25	12.40	3.98	2.56	19.38	11.00	35.23~%	3.38M	-60.9~%
Backbone + TRFeat	MF	2.10	1.22	11.67	3.49	2.32	16.15	9.26	30.75 %	4.37M	-49.4~%

 $_{\rm Fig.\ 5:}$ Endpoint error (epe) on MPI Sintel and KITTI 2015 training sets.

		Backbone + occ + $TRFlow$ + SR						Backbone + $occ + TRFeat + SR$					
		Sintel Final			Ki	tti15	Sintel Final			Kitti15			
	N'	all	noc	occ	epe-all	Fl-all	all	noc	occ	epe-all	Fl-all		
Ī	2	4.05	2.57	20.06	12.53	35.95 %	4.04	2.55	20.12	12.01	34.22 %		
	3	3.95	2.56	19.03	11.26	35.35~%	3.58	2.35	16.90	9.95	31.49~%		
İ	4	3.98	2.56	19.38	11.01	35.27 %	3.49	2.32	16.15	9.26	30.78 %		
	5	3.98	2.56	19.30	10.94	35.17~%	3.43	2.27	15.99	9.17	30.66~%		
Ĺ	6	3.98	2.58	19.11	10.94	35.19 %	3.50	2.32	16.25	9.14	30.69 %		

Fig. 6: Impact of the number of frames N' used at test time.

Fl-all, on KITTI, is the percentage of outliers (epe > 3 px).

2F (resp. MF) refers to two-frame (resp. multi-frame) methods.

TR stands for $temporal\ recurrence.$

SR stands for scale recurrence (that is iterating on the same weights for all levels).

TRFlow is our re-implementation of the multi-frame process of ContinualFlow.

TRFeat is the multi-frame process of STaRFlow, based on learned features.

Take-home points

- Our **temporal recurrence** using **learned features** improves estimation in occluded regions, on small objects, and on degraded quality images.
- Sharing weights for occlusion and optical flow estimation, and for every scale and frame, leads to a lightweight and state-of-the-art method.
- \bullet STaRFlow presents very good results on real data even when trained exclusively on synthetic data.

References

- [1] Daniel J Butler et al. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
- [2] A. Dosovitskiy et al. FlowNet: Learning optical flow with convolutional networks. In *ICCV*, 2015.
- [3] J. Hur and S. Roth. Iterative residual refinement for joint optical flow and occlusion estimation. In CVPR, 2019.
- [4] N. Mayer et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In CVPR, 2016.
- [5] M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In CVPR, 2015.
- [6] M. Neoral et al. Continual occlusions and optical flow estimation. ACCV, 2018.
- [7] D. Sun et al. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In CVPR, 2018.