

A Close Look at Deep Learning with Small Data

Lorenzo Brigato and Luca locchi

Deep Learning reached superior performance in many **Empiric** fields:

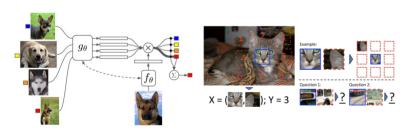
- 1. Lots of **data** (e.g. images, text)
- 2. High capacity neural networks (e.g ResNets)

Problem:

- 1. Obtaining/Labeling data at large scales
 - a. time-consuming
 - b. difficult
 - c. expensive

Popular approaches still rely on large source datasets:

- 1. Transfer/few-shot learning (labeled dataset)
- 2. Self-supervised learning (unlabeled dataset)



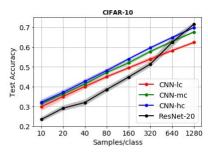
Focus on problems where \mathcal{D} is balanced and relatively small (constraining number of samples per class N): $N \in \{10, 20, 40, 80, 160, 320, 640, 1280\}$

Some previous works:

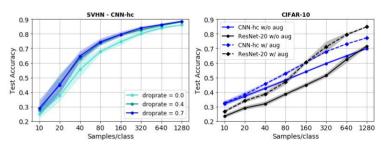
- 1. Do we need hundreds of classifiers to solve real world classification problems? [Fernandez et al. 2014]
- 2. Modern neural networks generalize on small data sets [Olson et al. 2018]
- 3. Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks [Arora et al. 2020]
- 4. Deep Learning on Small Datasets without Pre-Training using Cosine Loss [Barz et al. 2020]

Empirical study:

- Influence of model complexity on performance
 - a. CNN with 4 conv layers, diverse widths
 - b. ResNet-20 with 16 base filters



- Influence of regularization techniques on performance
 - c. Dropout -- drop-rates = 0.0/0.4/0.7
 - d. Standard data augmentation



- Comparison of baseline models with state-of-the art approaches:
 - e. CNTK [Arora et al. 2020]
 - f. Cosine loss [Barz et al. 2020]

