From Certain to Uncertain: Toward Optimal Solution for Offline Multiple Object Tracking

Kaikai Zhao, Takashi Imaseki, Hiroshi Mouri

Department of Mechanical Systems Engineering Tokyo University of Agriculture and Technology

Offline multiple object tracking

same or different objects? \rightarrow affinity measure

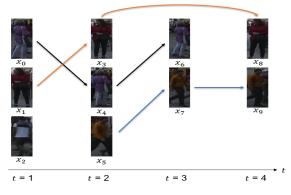
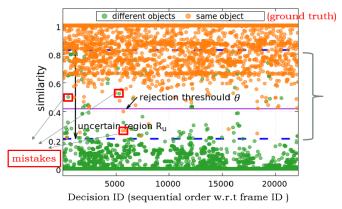
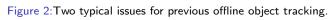




Figure 1:An example of object tracking. The task is to assign identities for detected objects across a series of frames.

Uncertain region and early mistakes

- 1. imperfect affinity measure \rightarrow uncertain region \rightarrow threshold $\theta \rightarrow$ mistakes
- 2. sequential tracking with pre-decided $\theta \rightarrow$ early mistakes

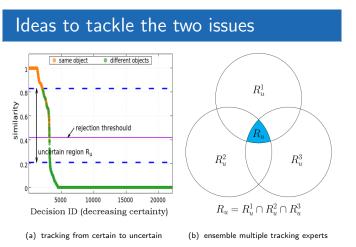
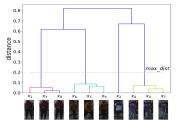


Figure 3:Ideas to tackle uncertain region and early mistake issues.

Einoshin Suzuki, Tetsu Matsukawa


Department of Informatics, ISEE Kyushu University

Our proposal

Agglomerative Hierarchical Clustering with Ensemble of Tracking Experts (AHC_ETE) **Notations**

S: image sequence; D: detection set; N: number of detections; x_i : i^{th} detection; T_k : k^{th} track; e: a tracking expert (method) Adapting AHC for object tracking

- memory complexity: $\mathcal{O}(N^2) \rightarrow \text{dividing } S$ into $S_1, ..., S_n$, reduced to $\mathcal{O}(N_i^2)$;
- Spatio-temporal constraint: detections in the same image should not belong to the same track → building cannot-link constraints

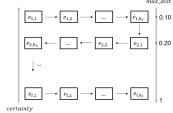


Figure 4:AHC based tracking

Figure 5:AHC_ETE framework

Defined distance measures

Appearance distance

$$dist_{appe}(x_i, x_j) = 1 - \frac{a_i^T a_j}{||a_i|| ||a_j||}$$
(1)

a_i : extracted CNN feature vector of x_i

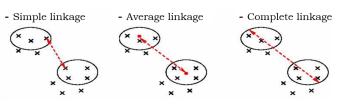


Figure 6:Linkages for the distance between two clusters

Motion (Kalman Filter) distance

state of object: $(u, v, \gamma, h, \dot{u}, \dot{v}, \dot{\gamma}, \dot{h})$ [Wojke et al., 17], centers, aspect ratio, height of a bbox

$$dist'_{kf}(T,x) = \sqrt{(y-\hat{y})^T \Sigma^{-1}(y-\hat{y})}$$
 (2)

 \boldsymbol{y} : detection, $\boldsymbol{\hat{y}}$: prediction of Kalman Filter

Temporal distance

 Γ_k : set of frame IDs for detections in T_k

 $dist_{temp}(T_u, T_v) = \begin{cases} |\Gamma_u \cap \Gamma_v| - |\Gamma_u \cup \Gamma_v| & \text{if } \Gamma_u \cap \Gamma_v \neq \emptyset \\ min(\Gamma_v) - max(\Gamma_u) & \text{elseif } max(\Gamma_u) < min(\Gamma_v) \\ min(\Gamma_u) - max(\Gamma_v) & \text{elseif } max(\Gamma_v) < min(\Gamma_u) \\ 0 & \text{else} \end{cases}$

frame IDs overlap \rightarrow negative value; one track appears later than another \rightarrow closest frame gap; no overlap & not earlier, later tracks $\rightarrow 0$

Integrated distance

 $dist(T_u, T_v) = dist_{major}(T_u, T_v) * F_1(\cdot) * F_2(\cdot) * \dots (5)$

We use appearance distance $dist_{appe}$ as $dist_{major}$, $F(\cdot)$ to filter other distances.

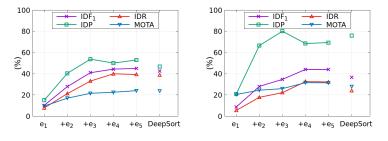
 $F(\nu, condition) = \begin{cases} 1 & \text{if } \nu \text{ satisfies } condition, \\ inf & \text{else.} \end{cases}$

Defined tracking experts

- 1. Preprocessing: build T_{fp} for detections with score ≤ 0.3 or suppressed by NMS with threshold 0.1; impose cannot-links for T_{fp} , i.e., for any track T_k , $dist(T_k, T_{fp}) = inf$.
- 2. Connecting detections to tracks: track with complete linkage (e_1) , then single linkages $(e_2 \text{ and } e_3) \rightarrow \text{remove cannot-links on } T_{fp}$ and track with weak constraints $(e_4 \text{ and } e_5)$
- 3. Post-processing: remove T_k if $|T_k| < 3$

Table 1:Settings of our defined experts. Here *appe*, *temp* and *kf* represent the settings for the appearance, temporal and Kalman Filter distance, respectively.

Ε	dist _{appe}	F ₁ (temp)	$F_2(kf)$	F ₃ (appe)	max_dist
e_1	complet	${ m e} \geq 0$	complete: < 9.5	-	0.10
e_2	single	\geq 0	-	-	0.05
<i>e</i> ₃	single	\geq 0	complete: < 9.5	-	0.10
e_4	single	\ge 0	complete: < 9.5	-	0.10
e_5	single	\ge 0	average:< 9.5	complete: ≤ 0.30	0.20

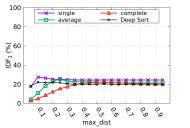

Design of experiments

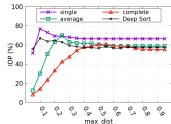
Dataset: MOT15, MOT16 [Milan et al., 16] training sequences

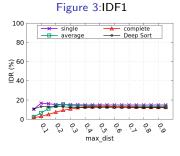
Evaluation metrics: multiple object tracking accuracy (MOTA [Bernardin and Stiefelhagen, 08]), identification precision (IDP), recall (IDR), corresponding *F*₁ score (IDF₁ [Ristani et al., 16]) Benchmark: Deep Sort [Wojke et al., 17] (same features, appearance and motion distances)

Result: effects of merging order

our method generally outperforms Deep Sort [Wojke et al., 17]; IDF₁s, IDPs, IDRs and MOTAs generally increase as more experts integrated




Figure 1:MOT15


Figure 2:MOT16

Result: effects of different linkages

standard AHC [Day and Edelsbrunner, 84] based tracking

Test data: MOT16-02

best IDF₁s, IDPs and IDRs differ; certain region of *single* < *average* < *complete* linkage

Figure 5:IDR

Conclusion

- Tackling two typical issues for object tracking:
 1) uncertain region, 2) early mistakes
- Proposed AHC_ETE: tracking from certain to uncertain, ensemble multiple tracking experts (a general framework for various distance measures and tracking experts)

Limitations and future work

- ► accepted all the progress of earlier experts → sensitive to the ordering of experts
- further experiments comparing with the state-of-the-art methods needed

Acknowledgments

This research was supported by the SAKURA project initiative of Japan Automotive Research Institute, Japan Ministry of Economy, Trade and Industry.