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Offline multiple object tracking

same or different objects? → affinity measure

Figure 1:An example of object tracking. The task is to assign

identities for detected objects across a series of frames.

Uncertain region and early mistakes

1. imperfect affinity measure→ uncertain
region→ threshold θ → mistakes

2. sequential tracking with pre-decided θ →
early mistakes

Figure 2:Two typical issues for previous offline object tracking.

Ideas to tackle the two issues

(a) tracking from certain to uncertain (b) ensemble multiple tracking experts

Figure 3:Ideas to tackle uncertain region and early mistake issues.

Our proposal

Agglomerative Hierarchical Clustering with
Ensemble of Tracking Experts (AHC ETE)
Notations
S : image sequence; D: detection set; N :
number of detections; xi : i th detection; Tk :
k th track; e: a tracking expert (method)
Adapting AHC for object tracking

I memory complexity: O(N2)→ dividing S
into S1, ..., Sn, reduced to O(N2

i );

I spatio-temporal constraint: detections in the
same image should not belong to the same
track→ building cannot-link constraints

Figure 4:AHC based tracking Figure 5:AHC ETE framework

Defined distance measures

Appearance distance

distappe(xi , xj ) = 1−
aT

i aj

||ai || ||aj ||
(1)

ai : extracted CNN feature vector of xi

Figure 6:Linkages for the distance between two clusters

Motion (Kalman Filter) distance
state of object: (u, v , γ, h, u̇, v̇ , γ̇, ḣ) [Wojke et

al., 17], centers, aspect ratio, height of a bbox

dist
′

kf (T , x) =

√
(y − ŷ)T Σ−1(y − ŷ) (2)

y : detection, ŷ : prediction of Kalman Filter
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Defined distance measures

dist = a (1)

dist = a (2)
dist = a (3)

Temporal distance
Γk : set of frame IDs for detections in Tk

disttemp(Tu,Tv) =
|Γu ∩ Γv | − |Γu ∪ Γv | if Γu ∩ Γv 6= ∅
min(Γv) − max(Γu) elseif max(Γu) < min(Γv)

min(Γu) − max(Γv) elseif max(Γv) < min(Γu)

0 else
(4)

frame IDs overlap→ negative value; one track
appears later than another→ closest frame
gap; no overlap & not earlier, later tracks→ 0

Integrated distance

dist(Tu,Tv) = distmajor(Tu,Tv)∗F1(·)∗F2(·)∗... (5)

We use appearance distance distappe as
distmajor , F (·) to filter other distances.

F (ν, condition) =

{
1 if ν satisfies condition,
inf else.

(6)

Defined tracking experts

1. Preprocessing: build Tfp for detections with
score ≤ 0.3 or suppressed by NMS with
threshold 0.1; impose cannot-links for Tfp,
i.e., for any track Tk , dist(Tk ,Tfp) = inf .

2. Connecting detections to tracks: track with
complete linkage (e1), then single linkages
(e2 and e3)→ remove cannot-links on Tfp

and track with weak constraints (e4 and e5)

3. Post-processing: remove Tk if |Tk | < 3

Table 1:Settings of our defined experts. Here appe, temp and kf

represent the settings for the appearance, temporal and Kalman

Filter distance, respectively.

E distappe F1(temp) F2(kf ) F3(appe) max dist
e1 complete ≥ 0 complete:< 9.5 - 0.10
e2 single ≥ 0 - - 0.05
e3 single ≥ 0 complete:< 9.5 - 0.10
e4 single ≥ 0 complete:< 9.5 - 0.10
e5 single ≥ 0 average:< 9.5 complete:≤ 0.30 0.20

Design of experiments

Dataset: MOT15, MOT16 [Milan et al., 16] training
sequences
Evaluation metrics: multiple object tracking
accuracy (MOTA [Bernardin and Stiefelhagen, 08]),
identification precision (IDP), recall (IDR),
corresponding F1 score (IDF1 [Ristani et al., 16])
Benchmark: Deep Sort [Wojke et al., 17] (same
features, appearance and motion distances)

Result: effects of merging order

our method generally outperforms Deep Sort
[Wojke et al., 17]; IDF1s, IDPs, IDRs and MOTAs
generally increase as more experts integrated

Figure 1:MOT15 Figure 2:MOT16

Result: effects of different linkages

standard AHC [Day and Edelsbrunner, 84] based tracking

Figure 3:IDF1 Figure 4:IDP

Figure 5:IDR

Test data: MOT16-02

best IDF1s, IDPs and
IDRs differ;
certain region of single
< average < complete
linkage

Conclusion

I Tackling two typical issues for object tracking:
1) uncertain region, 2) early mistakes

I Proposed AHC ETE: tracking from certain to
uncertain, ensemble multiple tracking experts
(a general framework for various distance
measures and tracking experts)

Limitations and future work

I accepted all the progress of earlier experts→
sensitive to the ordering of experts

I further experiments comparing with the
state-of-the-art methods needed
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Code: https://github.com/cyoukaikai/ahc_ete

https://github.com/cyoukaikai/ahc_ete

