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Motivations
• Usage of a shape representation invariant to

undesirable transformations
• New temporal modeling of landmark se-

quences
• Distance between arbitrary sequences
• Solution for self-reported pain estimation

Contributions
• Geometry based approach to estimate self-

reported pain
• Facial dynamics based on Gram matrix com-

putation and trajectory modeling
• The manifold S+(d, n) of positive-semidefinite

matrices is endowed with an optimised metric
for 2D

• A recent curve fitting method is used to
smooth trajectories on the manifold

• The use of Global Alignment Kernel for tem-
poral alignment, instead of DTW

Approach overview

Overview of the proposed approach - After facial landmarks extraction for each frame of a sequence, velocities
are computer as the displacement of the coordinates between two consecutive frames. The Gram matrices
are computed from the combination of the landmark coordinates and velocities to build the trajectory on
the S+(d, n) manifold. We apply a curve fitting algorithm on the trajectory for denoising and smoothing.
Global Alignment Kernel (GAK) is then used to align the trajectories on the manifold. Finally, we use the
kernel generated from GAK with SVR to estimate the self-reported pain level.

Shape Representation and Trajectory Modeling
Shape Representation
Each sequence is characterized by a set of landmarks {Z0, . . . , Zτ}, where τ is the number of frames
of the sequence, and each configuration matrix Zi (1 ≤ i ≤ τ) ∈ Rn×d encodes the position of
the n landmarks in d dimensions. Velocities are computed as the magnitude of the displacement
between two consecutive landmark configurations Zi and Zi+1. The final facial representation A is
the concatenation of the landmark coordinates and velocities. To measure the dynamic changes of
the curves, while remaining invariant to rotation and translation, we use Gram matrices that are
2n× 2n positive semi-definite matrices, of rank equal to d. It is computed as G = AAT .

Metric
We consider the manifold S+(d, 2n) as the quotient manifold R2n×d

∗ /Od, where R2n×d
∗ is the set

of full-rank 2n × d matrices. The mapping π : R2n×d
∗ → R2n×d

∗ /Od, that transforms points to
their equivalence class, induces a Riemannian metric on the quotient manifold from the Euclidean
metric in R2n×d

∗ . The distance between two elements is expressed in terms of facial configurations
Ai, Aj ∈ R2n×d

∗ as:
d(Gi, Gj) = min

Q∈Od

‖AjQ−Ai‖F ,

The optimal solution is Q∗ := V UT , where ATi Aj = UΣV T is the singular value decomposition.
When d = 2, the distance can be formulated as follows:

d(Gi, Gj) = tr(Gi) + tr(Gj)− 2
√

(a+ d)2 + (c− b)2 ,

where ATi Aj =
(
a b
c d

)
.

Alignment and Classification
Global Alignment Kernel (GAK) is used to align sequences on the manifold. Let us consider G1 =
{G1

0, · · · , G1
τ1} and G2 = {G2

0, · · · , G2
τ2}, two trajectories of Gram matrices. Given a metric to

compute the distance between two elements of each sequence, we propose to compute the matrix
D of size τ1 × τ2, where each D(i, j) is the distance between two elements of the sequences, with
1 ≤ i ≤ τ1 and 1 ≤ j ≤ τ2. The kernel k̃ can now be computed using the halved Gaussian Kernel on
this same matrix D, as well as the kernel k. They are defined as:

k̃(i, j) =
1

2
∗ exp

(
−D(i, j)

σ2

)
k(i, j) =

k̃(i, j)

(1− k̃(i, j))

To compute the similarity score between the two trajectories G1 and G2, we define a zeros matrix
M of size (τ1 + 1)× (τ2 + 1) with M0,0 = 1 that will contain the path to the similarity between our
two sequences. The terms of M are computed as:

Mi,j = (Mi,j−1 +Mi−1,j−1 +Mi−1,j) ∗ k(i, j).

The similarity score is the value atM(τ1+1),(τ2+1). Finally, we build a new matrixK of size nseq×nseq,
where nseq is the number of sequences in the dataset that contains all the similarity score between
all the sequences and is used directly with SVR for self-reported pain estimation.

Experimental results
Experimental results on the UNBC-McMaster
Shoulder Pain Archive are presented below.
To test our method, we used 3 different pro-
tocols: Leave-One-Sequence-Out, Leave-One-
Subject-Out cross validation and 5-folds cross
validation

UNBC-McMaster
Protocol % of frames MAE RMSE

Leave-One-Sequence-Out 25% 2.3166 3.1459
100% 2.5291 3.3263

Leave-One-Subject-Out cross validation 25% 2.523 3.2692
100% 2.9176 3.5133

5-fold cross validation 25% 2.4365 3.147
100% 2.7944 3.5088

Table 1: Results of our method with the 3 different pro-
tocols on the UNBC-McMaster Shoulder Pain Archive

Figure 2: Distribution of the predicted VAS values com-
pared with the real VAS using the 5-fold cross validation
protocol

Comparison with State-of-the-Art

Method Protocol Labels for training MAE
DeepFaceLift (2017)* 5-fold cross validation VAS 2.30
RNN-HCRF (2017)* random split VAS & PSPI 2.46
Ours 5-fold cross validation VAS 2.4365

Table 2: Comparison of our approach with state-of-the-
art results.

*: Deep learning based approaches


