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Abstract
Deep learning methods have proved to be powerful classification tools in the fields of structural and functional genomics. In this poster, we introduce Recursive
Convolutional Neural Networks (RCNN) for the analysis of epigenomic data. We focus on the task of predicting gene expression from the intensity of histone
modifications. The proposed RCNN architecture can be applied to data of an arbitrary size, and has a single meta-parameter that quantifies the models capacity, thus
making it flexible for experimenting. The proposed architecture outperforms state-of-the-art systems, while having several orders of magnitude fewer parameters.

The Problem
Chromatine consists of DNA knots coiled around proteins called histones.
Histones can be modified through methilation and other processes, thus
affecting the coiling and uncoilling of DNA locally. Histone modifications
regulate gene expression and can be sequenced and mapped onto the ge-
nome as a 1D signal. Given the local intencity of H3K27me3, H3K36me3,
H3K4me1, H3K4me3, and H3K9me3 we want to predict whether a gene is
expressed.
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Figure 1:

We formulate the problem as a binary classification (expressed/not-
expressed) of 5-channel signals sampled around each gene.

Method
• Ronald Coase:If you torture the data long enough, it will confess to anything.

• Reduce the model parameters by sharing all convolutional weights

• Multi-scale / Scale invariance

• Single capacity meta-parameter

Figure 2: ReChrome architecture

Conclusions
H3K27me3
H3K36me3

H3K4me1
H3K4me3
H3K9me3

DeepChrome trained on E003 Expressed

H3K27me3
H3K36me3

H3K4me1
H3K4me3
H3K9me3

DeepChrome trained on E003 Not Expressed

H3K27me3
H3K36me3

H3K4me1
H3K4me3
H3K9me3

ReChrome trained on E003 Expressed

-5000.0 -4000.0 -3000.0 -2000.0 -1000.0 0.0 1000.0 2000.0 3000.0 4000.0 5000.0

H3K27me3
H3K36me3

H3K4me1
H3K4me3
H3K9me3

ReChrome trained on E003 Not Expressed

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14
Recursion Depth

0.90

0.95

1.00

1.05

1.10

1.15

1.20

At
te

nt
io

n 
ve

ct
or

Figure 5: Dreamed samples of ReChrome and DeepChrome, and learned
depth coefficients of ReChrome.

• ReChrome is extremely well regularised. Practically immune to over-fitting.

• Reduced Capacity makes the ReChrome more generic.

• Local structure of the signals is not informative.

• Up to this performance (< 90%), the problem is easy. Very small capacity ReChro-
me performs almost as well.

Experiments
We worked on the epigenome of humans [1] we partitioned human genes
into train, validation, and testing so that a distance of 100 Kbases is gua-
rantied. We used 56 cell types to create 56 datasets.
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Figure 3: Model performance and consistency across datasets.

All experiments are performed on each dataset and averages across datasets
are presented. In table I, we compare to the State-of-the-Art, a CNN clas-
sifier [2] and an RNN with attention [3]. We also perform a cross-dataset
leave-one-out study: For each dataset, we train a model on the train-set
and average the performance on the test-set of all others. All variants of
ReChrome outperform both baselines.

TABLE I: Simple and cross-dataset performance
Model Parameters Val. set Test set Cross test set

DeepChrome 644 177 87.36 81.43 79.78
AttentiveChrome 55 681 86.36 86.80 NA
ReChrome 31 016 87.54 87.73 86.13
ReChrome Slim 3076 87.06 87.75 86.56
ReChrome Starved 416 86.55 86.45 86.45

An ablation study seen in table II, demonstrates the performance of ReChro-
me across several context sizes. Each sample, a gene’s TSS, is sampled at
several sampling rates from 1 base up-to 30,000 bases. Sparse sampling is
realised by average pooling. The sample length context around the gene
TSS also varies between ±4950 and ±15000 bases. It is apparent that
ReChrome manages to work at various sampling rates and sample sizes
with small variation in performance.

TABLE II: Sampling ablation study
Model bin size bin count TSS context (bases) AUC [%]

ReChrome 1 30 000 ±15, 000 85.35
ReChrome 100 100 ±5000 87.54
ReChrome 150 66 ±4950 87.64
ReChrome 150 200 ±15 000 87.63
ReChrome 300 34 ±10 200 88.05
ReChrome 300 100 ±15 000 88.07
ReChrome 400 26 ±5200 88.14
ReChrome 400 76 ±15 200 88.09
ReChrome 30 000 1 ±15 000 87.35
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