

# HUMAN OR MACHINE? IT IS NOT WHAT YOU WRITE, BUT HOW YOU WRITE IT



Luis A. Leiva<sup>1</sup>, Moises Diaz<sup>2</sup>, Miguel A. Ferrer<sup>3</sup>, Réjean Plamondon<sup>4</sup>

<sup>1</sup>Aalto University, Finland. name.surname@aalto.fi



<sup>3</sup>IDeTIC Institute, Universidad de Las Palmas de Gran Canaria, Spain. miguelangel.ferrer@ulpgc.es

<sup>4</sup>Polytechnique Montréal, Canada. rejean.plamondon@polymtl.ca



### ABSTRACT

UNIVERSIDAD DEL

ATLÁNTICO MEDIO

We study handwritten symbols (isolated characters, digits, gestures, and signatures) produced by humans and machines, and compare and contrast several deep learning models. We find that if symbols are presented as static images, they can fool state-of-the-art classifiers (near 75% accuracy in the best case) but can be distinguished with remarkable accuracy if they are presented as temporal sequences (95% accuracy in the average case). We conclude that an accurate detection of fake movements has more to do with how users write, rather than what they write. Our work has implications for computerized systems that need to authenticate or verify legitimate human users, and provides an additional layer of security to keep attackers at bay.





#### OFFLINE CLASSIFICATION

"Convolutional Neural Nets"

Our CNN models were built on top of existing pretrained network architectures, which we extended and fine-tuned for our classification task. *Conceptual representation*:



CNN-based sequence classifiers – \$1-GDS dataset

| System     | Precision | Recall | F-measure | Accuracy     | AUC   |
|------------|-----------|--------|-----------|--------------|-------|
| VGG16      | 68.50     | 68.48  | 68.45     | 68.48        | 75.39 |
| ResNet50   | 68.97     | 68.95  | 68.95     | 68.95        | 76.34 |
| Xception   | 71.15     | 71.03  | 70.98     | 71.03        | 79.58 |
| DenseNet   | 71.41     | 71.41  | 71.41     | 71.41        | 78.74 |
| Inception  | 75.09     | 74.69  | 74.57     | <b>74.69</b> | 82.82 |
| Custom CNN | 74.32     | 74.28  | 74.27     | 74.28        | 82.50 |

#### ONLINE CLASSIFICATION

"Recurrent Neural Nets"

Single input feature: velocity

$$v_i = \frac{\sqrt{\Delta x_i^2 + \Delta y_i^2}}{t_i - t_{i-1}}$$

RNN-based sequence classifiers – \$1-GDS dataset

| System                                | Precision                               | Recall                                  | F-measure                               | Accuracy                                | AUC                                     |
|---------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| 1NN-DTW                               | 85.32                                   | 83.97                                   | 83.80                                   | 83.97                                   | 83.88                                   |
| Vanilla RNN<br>LSTM<br>Bi-LSTM<br>GRU | 94.93<br>95.66<br>95.14<br><b>95.78</b> | 94.51<br>95.27<br>94.73<br><b>95.39</b> | 94.49<br>95.25<br>94.72<br><b>95.38</b> | 94.51<br>95.27<br>94.73<br><b>95.39</b> | 94.46<br>97.45<br>96.98<br><b>98.20</b> |
| Bi-GRU                                | 95.62                                   | 95.20                                   | 95.19                                   | 95.20                                   | 97.76                                   |

Results with our GRU classifier – All dataset

| Dataset  | Precision | Recall | F-measure | Accuracy | AUC   |
|----------|-----------|--------|-----------|----------|-------|
| \$1-GDS  | 95.78     | 95.39  | 95.38     | 95.39    | 98.20 |
| \$N-MMG  | 87.41     | 86.98  | 86.94     | 86.98    | 92.07 |
| Chars74k | 97.06     | 97.04  | 97.04     | 97.04    | 99.30 |
| SUSIGv   | 93.68     | 93.35  | 93.34     | 93.35    | 95.43 |

#### ONLINE VISUAL EXAMPLES

Velocity profile examples from our evaluated datasets, describing how a handwriting movement "unfolds" over time. A moving average filter of size 3 is applied to remove artificial jitter introduced by the input device. For each human movement, a synthetic version is generated with the  $\Sigma\Lambda$  model and plotted together with their human counterpart.



Synthetic and human samples are visually similar but the synthetic velocity profiles are smoother than their human counterparts.

## A. MODELS COMPLEXITY

Summary of the complexity of our models, informed by the usual proxy metrics in deep learning.

| System      | <b>Params</b> | <b>FLOPS</b> | Memory |
|-------------|---------------|--------------|--------|
| VGG16       | 16M           | 33M          | 81M    |
| ResNet50    | 32M           | 63M          | 367M   |
| Xception    | 30M           | 58M          | 336M   |
| DenseNet    | 26M           | 51M          | 302M   |
| Inception   | 30M           | 60M          | 347M   |
| Custom CNN  | 72K           | 289K         | 1.8M   |
| Vanilla RNN | 41K           | 40K          | 148K   |
| LSTM        | 41K           | 161K         | 507K   |
| GRU         | 31K           | 120K         | 392K   |
| Bi-LSTM     | 83K           | 322K         | 1M     |
| Bi-GRU      | 63K           | 241K         | 765K   |

- "Params": the number of trainable model weights
- "FLOPS" (Floating Point Operations Per Second): the number of multiply-and-accumulate operations
- "Memory": the model operational footprint.

# B. MODELS PERFORMANCE

The performance of all the RNNs over all our evaluated datasets.

| Dataset  | Model   | Precision | Recall | F-measure | Accuracy | AUC           |
|----------|---------|-----------|--------|-----------|----------|---------------|
| \$1-GDS  | Vanilla | 94.93     | 94.51  | 94.49     | 94.51    | 94.46         |
|          | LSTM    | 95.66     | 95.27  | 95.25     | 95.27    | 97.45         |
|          | Bi-LSTM | 95.14     | 94.73  | 94.72     | 94.73    | 96.98         |
|          | GRU     | 95.78     | 95.39  | 95.38     | 95.39    | 98.20         |
|          | Bi-GRU  | 95.62     | 95.20  | 95.19     | 95.20    | 97.76         |
|          | 1NN-DTW | 85.32     | 83.97  | 83.80     | 83.97    | 83.88         |
| \$N-MMG  | Vanilla | 77.94     | 77.65  | 77.59     | 77.65    | 83.59         |
|          | LSTM    | 81.84     | 80.08  | 79.79     | 80.08    | 81.25         |
|          | Bi-LSTM | 85.89     | 85.66  | 85.63     | 85.66    | 90.20         |
|          | GRU     | 87.41     | 86.98  | 86.94     | 86.98    | 92.07         |
|          | Bi-GRU  | 87.52     | 87.01  | 86.96     | 87.01    | <b>92.1</b> 4 |
|          | 1NN-DTW | 71.28     | 62.02  | 57.51     | 62.02    | 62.18         |
| Chars74k | Vanilla | 91.31     | 90.34  | 90.28     | 90.34    | 91.64         |
|          | LSTM    | 92.92     | 92.90  | 92.90     | 92.90    | 98.46         |
|          | Bi-LSTM | 95.43     | 95.27  | 95.26     | 95.27    | 99.25         |
|          | GRU     | 97.06     | 97.04  | 97.04     | 97.04    | 99.30         |
|          | Bi-GRU  | 96.60     | 96.60  | 96.60     | 96.60    | 99.49         |
|          | 1NN-DTW | 92.55     | 91.52  | 91.47     | 91.52    | 91.53         |
| SUSIGv   | Vanilla | 84.66     | 84.57  | 84.56     | 84.57    | 90.28         |
|          | LSTM    | 65.98     | 65.78  | 65.62     | 65.78    | 72.48         |
|          | Bi-LSTM | 88.37     | 87.41  | 87.32     | 87.41    | 92.21         |
|          | GRU     | 93.68     | 93.35  | 93.34     | 93.35    | 95.43         |
|          | Bi-GRU  | 95.00     | 94.68  | 94.67     | 94.68    | 97.29         |
|          | 1NN-DTW | 72.65     | 65.16  | 61.82     | 65.16    | 64.85         |

GRU is our main RNN classifier since it is a simpler architecture.
Similar performance between GRU and Bi-GRU mod-

els.

# C. GRU ROBUSTNESS

We train our GRU it on different splits of the original training data

The model is fine-tuned on 20 % of the training data

| Dataset  | Split | Train | Test  | Prec. | Recall | <b>F1</b> | Acc.  | AUC   |
|----------|-------|-------|-------|-------|--------|-----------|-------|-------|
| \$1-GDS  | 10%   | 1056  | 9504  | 95.37 | 94.91  | 94.89     | 94.91 | 96.61 |
|          | 20%   | 2112  | 8448  | 95.39 | 94.92  | 94.91     | 94.92 | 97.49 |
|          | 40%   | 4224  | 6336  | 95.47 | 95.03  | 95.02     | 95.03 | 97.52 |
|          | 80%   | 8448  | 2112  | 96.03 | 95.69  | 95.68     | 95.69 | 98.18 |
|          | 99%   | 10455 | 106   | 96.48 | 96.23  | 96.22     | 96.23 | 98.00 |
| \$N-MMG  | 10%   | 1919  | 17277 | 85.88 | 84.19  | 84.01     | 84.19 | 86.88 |
|          | 20%   | 3840  | 15356 | 87.81 | 87.26  | 87.21     | 87.26 | 92.32 |
|          | 40%   | 7678  | 11518 | 87.75 | 87.20  | 87.16     | 87.20 | 92.28 |
|          | 80%   | 15356 | 3840  | 88.19 | 87.45  | 87.38     | 87.45 | 92.39 |
|          | 99%   | 19004 | 192   | 87.31 | 86.98  | 86.95     | 86.98 | 93.21 |
| Chars74k | 10%   | 675   | 6083  | 91.47 | 91.44  | 91.43     | 91.44 | 96.76 |
|          | 20%   | 1351  | 5407  | 97.28 | 97.28  | 97.28     | 97.28 | 99.57 |
|          | 40%   | 2703  | 4055  | 98.57 | 98.57  | 98.57     | 98.57 | 99.87 |
|          | 80%   | 5407  | 1351  | 97.87 | 97.86  | 97.85     | 97.86 | 99.88 |
|          | 99%   | 6690  | 68    | 98.58 | 98.53  | 98.53     | 98.53 | 99.91 |
| SUSIGv   | 10%   | 376   | 3384  | 84.35 | 84.13  | 84.11     | 84.13 | 91.38 |
|          | 20%   | 752   | 3008  | 93.40 | 93.35  | 93.35     | 93.35 | 96.32 |
|          | 40%   | 1504  | 2256  | 92.92 | 92.69  | 92.68     | 92.69 | 95.80 |
|          | 80%   | 3008  | 752   | 95.75 | 95.48  | 95.46     | 95.48 | 97.47 |
|          | 99%   | 3722  | 38    | 100.0 | 100.0  | 100.0     | 100.0 | 100.0 |

Notice that when training on 99% of the data, the model:

- 1. has almost full knowledge of the data distribution
- 2. is tested on a smaller number of samples

## D. EFFECT OF INPUT DEVICE

\$N-MMG dataset contains stylus and finger input data. Train: A single type of data, stylus or finger Test: with both types of input data

| Train  | Test   | Precision | Recall | F-measure | Accuracy | AUC   |
|--------|--------|-----------|--------|-----------|----------|-------|
| Stylus | Stylus | 83.27     | 79.31  | 78.75     | 79.31    | 86.88 |
| Stylus | Finger | 93.21     | 92.29  | 92.25     | 92.29    | 97.25 |
| Finger | Finger | 95.47     | 95.24  | 95.24     | 95.24    | 97.03 |
| Finger | Stylus | 79.55     | 78.82  | 78.73     | 78.82    | 85.19 |

- Better results when tested on finger-only samples
- Poor quality on the stylus samples on this dataset
- As consequence: lower-than-usual performance when tested on these stylus samples.

# FINAL REMARKS

- 1. Liveness detection problem via handwriting symbols (isolated characters, digits, gestures, and signatures)
- 2. Classification through deep learning architectures (Convolutional Neural Network for off-line images and Recurrent Neural Network for on-line sequences x, y, t)
- 3. State-of-the-art result in off-line and on-line. Remarkable improvements in on-line sequences.
- 4. TL;DR: Accurate detection of fake movements has more to do with how users write, rather than what they write.

#### **Future Work**

- 1. What is real sequence? is it the obtained by the acquisition device? Special attention to the mathematical procedure to generate synthetic samples
- 2. Is there is an adequate type of handwriting to train the networks? Increasing the number of handwriting specimens and its typology (more symbols, signatures, characters and so on)
- 3. Liveness detection regarding the effect of using multi-device acquisition

# REFERENCES

- [1] L. A. Leiva and F. Álvaro μcaptcha: Human interaction proofs tailored to touch-capable devices via math handwriting. *Int. J. Hum. Comput. Interact.*, vol. 31, no. 7, 2012.
- [2] J. Galbally, R. Plamondon, J. Fierrez, and J. Ortega-García Synthetic on-line signature generation. Part II: Experimental validation *Pattern Recognit.*, vol. 45, no. 7, 2012.
- [3] U. Bhattacharya, R. Plamondon, S. Chowdhury, P. Goyal, and S. Parui, A sigma-lognormal model based approach to generating large synthetic online handwriting samples databases *Int. J. Doc. Anal. Recogn.*, vol. 20, no. 71, 2017.
- [4] A. Acien, A. Morales, J. Fierrez, and R. Vera-Rodriguez, BeCAPTCHA-Mouse: Synthetic mouse trajectories and improved bot detection In *arXiv* 2005.00890, 2020.
- [5] L. A. Leiva, D. Martín-Albo, and R. Plamondon, Gestures a go go: Authoring synthetic human-like stroke gestures using the kinematic theory of rapid movements *IEEE Transactions on Information Forensics and Security*, ACM Trans. Intell. Syst. Technol., vol. 7, no. 2, 2016.
- [6] C. D. Stefano, G. Guadagno, and A. Marcelli A saliency-based segmentation method for online cursive handwriting