

SAFRAN

Few-Shot Few-Shot Learning and the role of Spatial Attention

Yann Lifchitz^{1,2}, Yannis Avrithis¹, Sylvaine Picard² ¹Univ Rennes, Inria, CNRS, IRISA ²Safran

Contributions

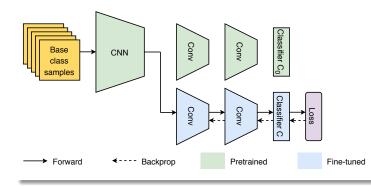
- Novel few-shot learning setting: Few-shot few-shot learning
- Few-shot accuracy improvement by using a pretrained network
- Novel domain independent spatial attention mechanism

Few-shot Few-shot

- Previous knowledge modeled as pretrained embedding network on a large scale dataset
- In domain labeled data can be hard to collect
- Base class data is limited to a few or even zero examples per class

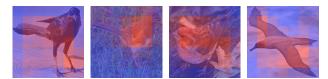
Base class training

- If base class exampels are available
- Fine-tuning of a copy of the last few layers of the network using [3]



Spatial attention

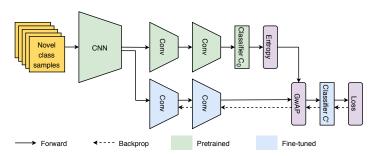
- With few base class data, the network can't learn to focus on the relevant parts of the images
- Local features are classified using the pretrained classifier as in dense classification [3]
- Classification [3]
 Certainty of the prediction relates to the discriminative power of the region
- For a region with prediction f over the c_0 base classes, the corresponding weight is: $w := 1 \frac{H(f)}{\log c_0}$, H being the entropy function
- Global average pooling is replaced by global weighted average pooling (GwAP)



Examples of images overlaid with spatial attention maps

Novel class adaptation

- Original pretrained network and classifier used to produce attention weights
- \blacktriangleright Global average pooling replaced by global weighted average pooling
- Spatial attention apply at inference after adaptation too



Results

- Experiments on fine-grained dataset: CUB and general classification: minilmageNet
- Modification of minilmageNet to remove overlap with pretraining
- Base class training is important for large domain gaps
- Novel class adaptation and spatial attention are more important when few base class data are available
- Combining the two leads to the best results

Attention Adaptation		\checkmark	\checkmark	\mathbf{x}
BASE	PLACES			
k = 0	38.80+0.24	39.69+0.24	39.76+0.24	40.79+0.24
k = 1	40.50±0.23	41.74±0.24	41.11 ± 0.24	42.23±0.24
k = 5	56.47±0.28	57.16±0.29	56.69±0.29	57.32±0.29
k = 10	62.83±0.30	64.32±0.30	62.97±0.30	64.41±0.30
All	$80.68{\scriptstyle\pm0.27}$	$80.48{\scriptstyle\pm0.27}$	$80.68 {\pm} 0.27$	$80.56{\scriptstyle\pm0.27}$
Base	RANDOMLY INITIALIZED			
k = 1	31.65±0.19	-	31.37±0.19	-
k = 5	40.52 ± 0.25	-	$40.50 {\pm} 0.26$	-
k = 10	48.25 ± 0.28	-	48.61±0.29	-
All	$71.78 {\pm} 0.30$	-	$71.77 {\pm} 0.30$	-
Baseline++ [1]	67.02±0.90	-	-	-
ProtoNet [4]	$71.88 {\pm} 0.91$	-	-	-
Ensemble [2]	68.77±0.71	-	-	-

Average 5-way 1-shot novel class accuracy on CUB with ResNet-18 either pre-trained on Places or trained from scratch on k base class examples

References

[1] W. Chen, Y. Liu, Z. Kira, Y. F. Wang, and J. Huang. A closer look at few-shot classification. ICLR, 2019.

[2] N. Dvornik, C. Schmid, and J. Mairal. Diversity with cooperation: Ensemble methods for few-shot classification. ICCV,

[3] Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc. Dense classification and implanting for few-shot learning. CVPR,

019.

[4] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In NIPS, 2017