

Revisiting the Training of Very Deep Neural Networks without Skip Connections

Oyebade K. Oyedotun*, Abd El Rahman Shabayek *, Djamila Aouada *, Björn Ottersten *
Interdisciplinary Centre for Security, Reliability and Trust - University of Luxembourg, L-1855 Luxembourg

COVID-19 TO Think positive 25th INTERPRETATION CONFERENCE ON PATTERN RECORNICION Mays, Ruly 10 11.5 January 2021

Abstract

We investigate two scenarios that plague the training of very deep PlainNets (models without skip connections): (1) the relatively popular challenge of 'vanishing and exploding units' activations', and (2) the less investigated 'singularity' problem, which is studied in the literature. In contrast to earlier works that study only the saturation and explosion of units' activations in isolation, this paper harmonizes the inconspicuous coexistence of the aforementioned problems for very deep PlainNets. We argue that the aforementioned problems would have to be tackled simultaneously for the successful training of very deep PlainNets. Finally, different techniques that can be employed for tackling the optimization problem are discussed

Introduction

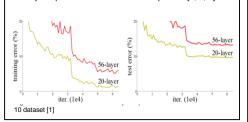
- Very deep models \rightarrow Deep Neural Networks (DNNs) with over 15 layers.
- Generalization performance of DNNs generally increase with depth increase.

Motivation

- Simple architecture, since there is one information path from the input to the output of the model.
- Hierarchical representations are easier to interpret.

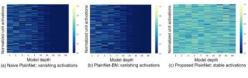
Problem Statement

- Very deep PlainNets are difficult to optimize [1, 2, 3].

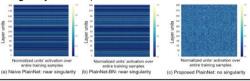


Proposed investigation

- Units' activation evolution: Units' activation stability



- Singularity: Hidden representation condition



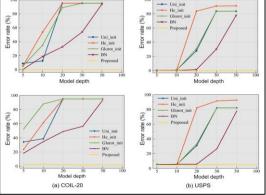
Alleviating the training problem of very deep PlainNet

- Batch normalization (BN)

100

- Leaky rectified linear units (LReLU)
- Max-norm constraint for model weights

□ Proposed solution → BN + LReLU + Maxnorm



Experiments

Table 1: Ablation studies for the different components of the proposed solution.

Model component		Train error	Test error
Batch normalization (BN) LReLU	Ī	84.56% 92.37%	83.21% 92.03%
Max-norm		86.22% 78.38%	86.85%
BN + LReLU BN + max-norm		82.90%	79.52% 81.86%
LReLU + max-norm Proposed: BN + LReLU + max-norm		83.62% 0.11%	82.11% 5.48%

Table 2: Results on CIFAR-10 dataset

Model	I	Skip conn.	Ī	Layers	Ī	Parameters	Ī	Test error
Highway network [2] ResNet [3] ResNet [3]		Yes Yes Yes		19 56 110		2.30M 0.85M 1.7M		7.54% 6.97% 6.43%
All CNN [30] NiN [31] Delta init. [15] PlainNet-BN [3] Proposed PlainNet		No No No No No		8 10 32 56 50		1.30M 1.30M 17.80M 0.85M 0.72M		7.25% 8.81% 18.00% 15.00% 6.65 %

Conclusion

It is common to observe poor generalization when the depth of DNNs without skip connections (i.e. very deep PlainNets) exceeds 15 layers. In this paper, our investigation results reveal that the successful training of very deep PlainNets would rely on simultaneously alleviating vanishing/exploding units' activations and singularity of units' activations. Lastly, we demonstrate an approach for alleviating the training problems.

References

 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. CVPR (pp. 770-778).

[2] Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks. NIPS (pp. 2377-2385).

[3] Oyedotun, O. K., Aouada, D., & Ottersten, B. (2017, November). Training very deep networks via residual learning with stochastic input shortcut connections. ICONIP (pp. 23-33).

This work was funded by:

The National Research Fund (FNR), Luxembourg, under the project reference R-AGR- 0424-05-D/Biorn Ottersten.

