Light3DPose *Real-time Multi-Person 3D Pose Estimation from Multiple Views*

Alessio Elmi - Davide Mazzini - Pietro Tortella Standard Cognition - Checkout Technologies s.r.l. {alessio,davide,pietro}@standard.ai

Introduction

We propose Light3DPose, a complete bottom-up approach to reconstruct 3D human poses from few calibrated camera views. With quantitative and qualitative analysis we show that:

- it can handle crowded scenes with good accuracy.
- it scales efficiently with the number of input sources (camera views)
- it is able to produce good results even from a monocular view.

Method

Light3DPose is composed of four main stages:

- A 2D Views Processing stage which returns a 2D feature map for each camera
- An Unprojection layer [6] which aggregates the information coming from all the 2D views into a 3D input features space representation
- A volumetric Processing that process the aggregated 3D representation and produces an intermediate output representation
- A Sub-voxel joint detection and a skeleton decoding part to detect and build complete body skeletons

Datasets and Metrics

• Our sub-voxel localization strategy overcomes the issue of a coarse quantized 3D space thus substantially impacting the MPJPE localization measure.

Quantitative results

Panoptic

We compare our results on Panoptic dataset with [7] on different train/test regimes:

	MI	PJPE (c	PCP	
Model	single	multi	avg	avg
ACTOR [7] (2 views)*	17.21	50.24	33.72	-
ACTOR (4 views)*	8.19	20.10	14.14	-
ACTOR (10 views)*	6.13	12.21	9.17	-
Oracle [7] (using GT to select cameras)*	4.24	9.19	6.71	-
Ours (1 unseen view)	10.34	9.32	9.43	80.8
Ours (2 to 4 unseen views depending on scene)	5.30	4.09	4.22	98.2
Ours (10 views, from training view pool)	3.50	3.56	3.55	98.6

*ACTOR: number in brackets refers to maximum number of views to choose from. Oracle means: best views to triangulate are selected using groundtruth.

Light3DPose can even process a scene from a single view. The accuracy increases adding more views to it.

Visual Results

The power of direct 3D pose estimation: by exploiting a holistic 3D space representation, our volumetric architecture can learn strong pose priors and implicitly discards false detections, being less prone to occlusion-related errors and better dealing with crowded scenes.

We trained and tested our model on CMU Panoptic dataset. We also tested the model on the Shelf [1] in order to evaluate the cross-dataset model generalization. Metrics employed:

- Mean Per Joint Position Estimation (MPJPE)
- Percentage of correctly estimated Parts (PCP)

Ablation Studies

We performed ablation studies to evaluate the effect on the model's performance with respect to:

- Augmentation strategies
- Number of volumetric features
- Loss function type
- Weighting of the different loss components
- Sub-voxel refinement

PCP Up Arm Lo Arm Up Leg Lo Leg Torso Head Avg MPJPE (cm)Cube Rotation

A break down of the inference time for each single component. Since the view-dependent part is very lightweight, the inference time scales well with an increasing number of input views.

An example of Light3DPose results with a single input view.

Conclusions

- The proposed method achieves SOTA accuracy on Panoptic dataset and comparable accuracy on Shelf (never seen in training and validation);
- it is 3x faster than SOTA 3D Pose estimation algorithms based on 2D Pose detection + Triangulation

Number of Volumetric Features								
32	4.760	99.6 99.7 97.1 78.9 99.5 98.6 95.9	_					
64	3.859	99.7 99.7 99.5 95.6 99.3 98.8 98.8						
96	3.975	99.7 99.7 99.5 96.2 99.3 98.7 98.9						
			_					

	Loss Type							
L1	4.106	99.6 99.7 99.2 96.2 99.0 98.0 98.7						
L2	4.125	99.6 99.7 99.5 96.6 99.4 98.9 99.0						
SmoothL1	3.859	99.7 99.7 99.5 95.6 99.3 98.8 98.8						

Heatmap / Vectormap Loss Ratio							
1	3.859	99.7 99.7 99.5 95.6 99.3 98.8 98.8					
3	4.074	99.7 99.7 99.1 96.6 99.5 98.6 98.9					
10	3.935	99.7 99.7 98.0 90.9 99.5 98.8 97.9					

	Sub-voxel refinement							
	4.899	99.7	99.7	99.4	94.9	99.3	98.8	98.6
\checkmark	3.859	99.7	99.7	99.5	95.6	99.3	98.8	98.8

Considerations:

• Our synthetic 3D-data augmentation policies greatly enhance the network performance

Shelf

We tested Light3DPose (trained only on CMU Panoptic dataset) on Shelf [1], and achieve SOTA-comparable results using only one third of the computational time.

Model	Actor 1	Actor 2	Actor 3	Avg	Speed(s)
Belagiannis et al. [1]	66.1	65.0	83.2	71.4	-
Belagiannis et al. [3]	75.0	67.0	86.0	76.0	-
Belagiannis et al. [2]	75.3	69.7	87.6	77.5	-
Ershadi et al. [5]	93.3	75.9	94.8	88.0	-
Dong et al. [4]	98.8	94.1	97.8	96.9	.465
Ours	94.3	78.4	96.8	89.8	.146

• A larger dataset with higher variety of poses will probably lead to further improvements.

References

[1] B. et al. 3d pictorial structures for multiple human pose estimation. [2] B. et al. 3d pictorial structures revisited: Multiple human pose estimation.

[3] B. et al. Multiple human pose estimation with temporally consistent 3d pictorial structures.

[4] D. et al. Fast and robust multi-person 3d pose estimation from multiple views.

[5] E.-N. et al. Multiple human 3d pose estimation from multiview images.

[6] I. et al. Learnable triangulation of human pose.

[7] P. et al. Domes to drones: Self-supervised active triangulation for 3d human pose reconstruction.