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Introduction
We propose Light3DPose, a complete bottom-up approach to recon-
struct 3D human poses from few calibrated camera views.
With quantitative and qualitative analysis we show that:
• it can handle crowded scenes with good accuracy.
• it scales efficiently with the number of input sources (camera views)
• it is able to produce good results even from a monocular view.

Method
Light3DPose is composed of four main stages:
•A 2D Views Processing stage which returns a 2D feature map for

each camera
•An Unprojection layer [6] which aggregates the information com-

ing from all the 2D views into a 3D input features space represen-
tation
•A volumetric Processing that process the aggregated 3D represen-

tation and produces an intermediate output representation
•A Sub-voxel joint detection and a skeleton decoding part to detect

and build complete body skeletons

Datasets and Metrics
We trained and tested our model on CMU Panoptic dataset. We also
tested the model on the Shelf [1] in order to evaluate the cross-dataset
model generalization.
Metrics employed:
•Mean Per Joint Position Estimation (MPJPE)
• Percentage of correctly estimated Parts (PCP)

Ablation Studies
We performed ablation studies to evaluate the effect on the model’s
performance with respect to:
•Augmentation strategies
•Number of volumetric features
• Loss function type
•Weighting of the different loss components
• Sub-voxel refinement
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Cube Rotation 3D Augmentations
8.236 99.1 99.3 87.8 65.4 96.9 88.3 89.2

X 4.598 99.6 99.7 98.5 90.1 99.3 98.5 97.7
X 5.350 99.6 99.7 98.6 91.1 99.0 94.9 97.3

X X 3.859 99.7 99.7 99.5 95.6 99.3 98.8 98.8

Number of Volumetric Features
32 4.760 99.6 99.7 97.1 78.9 99.5 98.6 95.9
64 3.859 99.7 99.7 99.5 95.6 99.3 98.8 98.8
96 3.975 99.7 99.7 99.5 96.2 99.3 98.7 98.9

Loss Type
L1 4.106 99.6 99.7 99.2 96.2 99.0 98.0 98.7
L2 4.125 99.6 99.7 99.5 96.6 99.4 98.9 99.0

SmoothL1 3.859 99.7 99.7 99.5 95.6 99.3 98.8 98.8

Heatmap / Vectormap Loss Ratio
1 3.859 99.7 99.7 99.5 95.6 99.3 98.8 98.8
3 4.074 99.7 99.7 99.1 96.6 99.5 98.6 98.9

10 3.935 99.7 99.7 98.0 90.9 99.5 98.8 97.9

Sub-voxel refinement
4.899 99.7 99.7 99.4 94.9 99.3 98.8 98.6

X 3.859 99.7 99.7 99.5 95.6 99.3 98.8 98.8
Considerations:
•Our synthetic 3D-data augmentation policies greatly enhance the

network performance

•Our sub-voxel localization strategy overcomes the issue of a coarse
quantized 3D space thus substantially impacting the MPJPE local-
ization measure.

Quantitative results

Panoptic
We compare our results on Panoptic dataset with [7] on different
train/test regimes:

MPJPE (cm) PCP
Model single multi avg avg
ACTOR [7] (2 views)* 17.21 50.24 33.72 -
ACTOR (4 views)* 8.19 20.10 14.14 -
ACTOR (10 views)* 6.13 12.21 9.17 -
Oracle [7] (using GT to select cameras)* 4.24 9.19 6.71 -
Ours (1 unseen view) 10.34 9.32 9.43 80.8
Ours (2 to 4 unseen views depending on scene) 5.30 4.09 4.22 98.2
Ours (10 views, from training view pool) 3.50 3.56 3.55 98.6

*ACTOR: number in brackets refers to maximum number of views to choose from.
Oracle means: best views to triangulate are selected using groundtruth.

Light3DPose can even process a scene from a single view. The accu-
racy increases adding more views to it.
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A break down of the inference time for each single component. Since
the view-dependent part is very lightweight, the inference time scales
well with an increasing number of input views.
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Shelf
We tested Light3DPose (trained only on CMU Panoptic dataset) on
Shelf [1], and achieve SOTA-comparable results using only one third
of the computational time.

Model Actor 1 Actor 2 Actor 3 Avg Speed(s)
Belagiannis et al. [1] 66.1 65.0 83.2 71.4 -
Belagiannis et al. [3] 75.0 67.0 86.0 76.0 -
Belagiannis et al. [2] 75.3 69.7 87.6 77.5 -
Ershadi et al. [5] 93.3 75.9 94.8 88.0 -
Dong et al. [4] 98.8 94.1 97.8 96.9 .465
Ours 94.3 78.4 96.8 89.8 .146

Visual Results
The power of direct 3D pose estimation: by exploiting a holistic 3D
space representation, our volumetric architecture can learn strong pose
priors and implicitly discards false detections, being less prone to
occlusion-related errors and better dealing with crowded scenes.

Input Views (2D Backbone Poses)

Geometric Triangulation from 2D Backbone Poses Direct 3D Pose Estimation (Our Model)

An example of Light3DPose results with a single input view.

Direct 3D Pose Estimation (Our Model)

Single View Input

Conclusions
• The proposed method achieves SOTA accuracy on Panoptic dataset

and comparable accuracy on Shelf (never seen in training and vali-
dation);

• it is 3x faster than SOTA 3D Pose estimation algorithms based on
2D Pose detection + Triangulation

•A larger dataset with higher variety of poses will probably lead to
further improvements.
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