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e Our sub-voxel localization strategy overcomes the 1ssue of a coarse
quantized 3D space thus substantially impacting the MPJPE local-
1zation measure.

Introduction Visual Results

We propose Light3DPose, a complete bottom-up approach to recon-
struct 3D human poses from few calibrated camera views.
With quantitative and qualitative analysis we show that:

The power of direct 3D pose estimation: by exploiting a holistic 3D
space representation, our volumetric architecture can learn strong pose
priors and implicitly discards false detections, being less prone to

Quantitative results occlusion-related errors and better dealing with crowded scenes.

e it can handle crowded scenes with good accuracy.

e it scales efficiently with the number of input sources (camera views) .
o , Panoptic
e it 1s able to produce good results even from a monocular view.

We compare our results on Panoptic dataset with [7] on different
train/test regimes:

Method

MPIPE (cm) PCP
Light3DPose is composed of four main stages: Model single multi  avg avg

. . . ACTOR [7] (2 views)* 17.21 50.24 33.72

e A 2D Views Processing stage which returns a 2D feature map for ACTOR (4 views)* $19 20.10 14.14

each camera ACTOR (10 views)* 6.13 12.21 9.17
e An Unprojection layer [6] which aggregates the information com- Oracle [7] (using GT to select cameras)* 4.24 9.19 671 i
: . . . Ours (1 unseen view) 10.34 9.32 943 80.8
ing from all the 2D views into a 3D input features space represen- Ours (2 to 4 unseen views depending on scene)| 5.30 4.09 4.22 98.2
tation Ours (10 views, from training view pool) 3.50 3.56 3.55 98.6

e A volumetric Processing that process the aggregated 3D represen-

: : : . *ACTOR: number in brackets refers to maximum number of views to choose from.
tation and produces an intermediate output representation

Oracle means: best views to triangulate are selected using groundtruth.
e A Sub-voxel joint detection and a skeleton decoding part to detect

and build complete body skeletons Light3DPose can even process a scene from a single view. The accu-

racy increases adding more views to 1it.

Datasets and Metrics

14.00
We trained and tested our model on CMU Panoptic dataset. We also . 12.007
tested the model on the Shelf [1] in order to evaluate the cross-dataset E 10.00 -
model generalization. & 8.00-
Metrics employed: S 0
e Mean Per Joint Position Estimation (MPJPE) |
. 4.00 ————————
e Percentage of correctly estimated Parts (PCP) - 1 1 1 1 1 1 1 1 1
1.000 -
Ablation Studies 0.900 ® 1to4-poold-cross_view
o ' # 4 1to4-pooll0-cross view
We performed ablation studies to evaluate the effect on the model’s Q- ¢ 1tol0-pool20-cross_view
performance with respect to: 0.800 - & 1tol0-all_views
e Augmentation strategies
e Number of volumetric features 1 > 3 4 5 6 7 3 9 10
e Loss function type Number of views

e Weighting of the different loss components

e Sub-voxel refinement A break down of the inference time for each single component. Since

PCP the view-dependent part 1s very lightweight, the inference time scales
E B o g well with an increasing number of input views.
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v 4.598 99.6 99.7 98.5 90.1 99.3 98.5 97:7 % 010 and comparable accuracy on Shelf (never seen in training and vali-
v 5.350 199.6 99.7 98.6 91.1 99.0 94.9/97.3 §0_08 dation);
v v 3.859 199.7 99.7 99.5 95.6 99.3 98.898.8 8 e it 1s 3x faster than SOTA 3D Pose estimation algorithms based on
o 0.06 . . .
o 2D Pose detection + Triangulation

% 1760 N9119m 6b e9r9o§ \go;ulmgtgng I;eéagur;; 1955 e - \ljz':rr;‘ztcr:icon e A larger dataset with higher variety of poses will probably lead to

64 3.859 99.7 99.7 99.5 95.6 99.3 98.8 98.8 002 ~ Reduction further improvements.
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1 2 3 4 5 6 7 8 9 10
Number of Views
Loss Type References

L1 4,106 199.6 99.7 99.2 96.2 99.0 98.0 98.7

L2 4.125 199.6 99.7 99.5 96.6 99.4 98.9 99.0 [1] B. et al. 3d pictorial structures for multiple human pose estimation.
SmoothL1 | 3.859 99.7 99.7 99.5 95.6 99.3 98.8/98.8 Shelf

[2] B. et al. 3d pictorial structures revisited: Multiple human pose
estimation.

Heatmap / Vectormap Loss Ratio We tested Light3DPose (trained only on CMU Panoptic dataset) on

1 3.859 /1997 997 995 956 99 3 98.8/08 & Shelf [1], and achieve SOTA-comparable results using only one third [3] B. et al. Multiple human pose estimation with temporally consis-
3 4074 99.7 99.7 99.1 96.6 99.5 98.6 98.9 of the computational time. tent 3d pictorial structures.
10 3.935 199.7 99.7 98.0 90.9 99.5 98.8 97.9 Model Actor I Actor 2 Actor 3| Avg | Speed(s) 4] D. eF al. Fast and robust multi-person 3d pose estimation from
. - multiple views.
Sub-voxel refinement Belagiannis et al. [1]| 66.1 65.0 83.2 |71.4 -
48909 1997 907 004 949 993 98.8/ 98 6 Belagiannis et al. [3]| 75.0 67.0 R6.0 176.0 _ [5] E.—N. et al. Multiple human 3d pose estimation from multiview
v 3.859 99.7 99.7 99.5 95.6 99.3 98.8 98.8 Belagiannis et al. [2]| 753  69.7 87.6 |77.5 - IMAges.
Considerations: Ershadi et al. [5] 033 759 948 |88.0 - [0] I. et al. Learnable triangulation of human pose.
e Our synthetic 3D-data augmentation policies greatly enhance the Dong et al. [4] 98.8 94.1 97.8 196.9 465 [7] P. et al. Domes to drones: Self-supervised active triangulation for
network performance Ours 94.3 78.4 96.8 89.83 .146 3d human pose reconstruction.



