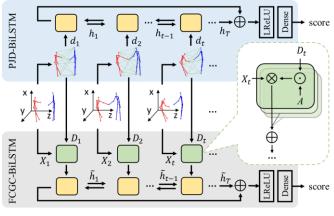


A Two-Stream Recurrent Network for Skeleton-based Human Interaction Recognition

Qianhui Men^{*}, Edmond S. L. Ho[†], Hubert P. H. Shum[‡], Howard Leung^{*} *Department of Computer Science, City University of Hong Kong [†]Department of Computer and Information Sciences, Northumbria University [‡]Department of Computer Science, Durham University

INTRODUCTION

- Goal: To recognize human-human interactions based on skeleton data from 2D or 3D joint locations.
 - Weakness of Existing Work:
 - Lack of effective spatial modeling among joints.
 - Heavily rely on features within Individual characters.
- Motivation:
 - Exploring valuable *mutual information* between characters.
 - . Investigating inner correlations among joints using graph.
 - Learning the spatial proximity with *pairwise geometric* features in the graph representation.



ESTM cell 🔄 : FCGC cell A: adaptive adjacency matrix 🕥 : element-wise product ⊗ : matrix multiplication 🕀 : concatenation

SCORE FUSION

- Late Fusion: To take advantage of different discriminative abilities of > the two streams by combining their prediction scores.
- Objective: To highlight the lower entropy in the probability distributions of the two network classifiers, since it indicates higher confidence of the predicted class; and to hold back the less discriminative predictions (larger entropy) in the meanwhile.
- Method: The final prediction score is weighted from both streams. Specifically, α_n gives the degree of confidence towards the n-th network stream (here n = 1 or 2):

$$\alpha = 1 - \frac{\sum_{k=1}^{K} P_n(y_k | \mathbf{X}, \Theta_n) \log(P_n(y_k | \mathbf{X}, \Theta_n))}{\sum_{k=1}^{K} P_n(y_k | \mathbf{X}, \Theta_n)}$$

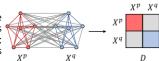
 $\sum_{m=1}^{N} \sum_{k=1}^{K} P_m(y_k | \mathbf{X}, \Theta_m) \log(P_m(y_k | \mathbf{X}, \Theta_m))'$ where $P_n(y_k | \mathbf{X}, \Theta_n)$ is the k-th classification score of the interaction sample **X** under network parameter set Θ .

CONTRIBUTION

- A pairwise joint distance-based network (PJD-BiLSTM) that models the explicit interaction patterns from discriminative geometric features.
- A fully-connected graph convolution network (FCGC-BiLSTM) that quantifies the spatial proximity of interaction from joint positions to extract the *implicit correlations* among joints.
- A *late fusion* algorithm that takes advantage of both networks.
- State-of-the-art recognition performance on 3D interaction dataset and comparable on RGB videos with 2D key joints.

NETWORK STRUCTURE

Fully-Connected Mesh: Connecting any of the two joints of the interaction to capture features within two characters (X^p and X^q); Converting the pairwise distances into a weight matrix D.



Here is a simplified humanoid skeletal structure with five joints.

••• PJD-BiLSTM: To learn the explicit spatial-temporal dependency by modeling the joint pair correlations. PJD of a joint pair X_i^p and X_i^q at frame *t* is calculated by:

$$D_t\left(X_i^p, X_j^q\right) = \frac{1}{\exp\left(\left\|X_i^p - X_j^q\right\|_t\right)}$$

By modeling joint pair-level correlations, this stream is better at discriminating interactions with distinct patterns, such as kicking and punching.

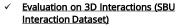
FCGC-BiLSTM: To capture the implicit correlations by representing the interaction as graph, where the skeletal joints of the two characters are graph nodes.

Given $\mathbf{X}_t = [X^p; X^q]|_t$ as input with C channels, the graph convolution operation inside FCGC cell under coefficients W is formed as:

$$W \star_g \mathbf{X}_t = \sigma((\bigoplus_{t=1}^{c} (A \odot D_t) \mathbf{X}_t^c) W).$$

- The joint connectivity $\overset{c=1}{A}$ is adaptive to **increase the flexibility** 0 of the graph representation.
- PJD feature D_t is incorporated as auxiliary information to support the spatial proximity in the graph structure.

By modeling joint-level correlations, this stream is able to tell interactions with subtle differences, such as *pushing* and punching.



Method	Acc. (%)
Joint Features [1]	80.3
Clips+CNN+MTLN [2]	93.5
LSTM+FA+VF [3]	95.0
PJD-BiLSTM	94.0
FCGC-BILSTM	95.1
PJD+FCGC	96.8

EXPERIMENT

Evaluation on Key Joints of 2D RGB Videos (UT-Interaction Dataset)

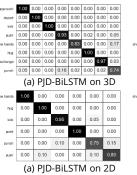
Modality	Method	Acc. (%)	
RGB	HR [4]	88.4	
	PKM [5]	93.3	
RGB+skeleton	PA-DRL [6]	96.7	
	PJD-BILSTM	91.9	

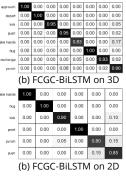
FCGC-BiLSTM

PJD+FCGC

skeleton

Comparisons of Confusion Matrix of Two Streams





REFERENCE

92.7

94.4

[1] Two-person interaction detection using body-pose features and multiple instance learning, CVPRW'12 [4] A hierarchical representation for future action prediction, ECCV'14 [2] A new representation of skeleton sequences for 3d action recognition, CVPR'17 [3] Attention-based multiview re-observation fusion network for skeletal action recognition, TMM'18

[5] Poselet key-framing: A model for human activity recognition, CVPR'13 [6] Part-activated deep reinforcement learning for action prediction, ECCV'18