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INTRODUCTION CONTRIBUTION

+ Goal: To recognize human-human interactions based on skeleton Q A pairwise joint distance-based network (PJD-BiLSTM) that models the
data from 2D or 3D joint locations. explicit interaction patterns from discriminative geometric features.
+  Weakness of Existing Work: i )
= Lack of effective spatial modeling among joints. Q A fully-connected graph convolution network (FCGC-BIiLSTM) that
«  Heavily rely on features within Individual characters quantifies the spatial proximity of interaction from joint positions to

. Motivation: extract the /implicit correlations among joints.

- Explor.inglvall.JabIe mutual {nformaz‘/on F)e.tween‘characters. Q A /ate fusion algorithm that takes advantage of both networks.

= Investigating inner correlations among joints using graph.

= Learning the spatial proximity with pairwise geometric QO State-of-the-art recognition performance on 3D interaction dataset
featuresin the graph representation. and comparable on RGB videos with 2D key joints.

NETWORK STRUCTURE
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SCORE FUSION % FCGC-BILSTM: To capture the implicit correlations by representing the
interaction as graph, where the skeletal joints of the two characters
> Late Fusion: To take advantage of different discriminative abilities of are graph nodes.

the two streams by combining their prediction scores.

» Objective: To highlight the lower entropy in the probability
distributions of the two network classifiers, since it indicates higher c
confidence of the predicted class; and to hold back the less W X =0o((D (A © DYXHW).
discriminative predictions (larger entropy) in the meanwhile. c=1

» Method: The final prediction score is weighted from both streams.

Given X, = [X?; X1]|,as input with C channels, the graph convolution
operation inside FCGC cell under coefficients W is formed as:

o The joint connectivity 4 is adaptive to increase the flexibility
of the graph representation.

Specifically, a, gives the degree of confidence towards the n-th o PJD feature D, is incorporated as auxiliary information to
network stream (here n =1 or 2): support the spatial proximity in the graph structure.
K
a,=1- Sies PaVklX, O) 108(Pu(ylX, On)) ) => = By modeling joint-level correlations, this
N1 K PmYklX, Oy log(Pm(Vic X, ©;r)) stream is able to tell interactions with
where P,(y«|X,0,) is the k-th classification score of the interaction subtle differences, such as pushing and
sample X under network parameter set 0. pushing punching  punching.

EXPERIMENT

v Evaluation on 3D Interactions (SBU v Evaluation on Key Joints of 2D RGB v Comparisons of Confusion Matrix of Two Streams
Interaction Dataset) Videos (UT-Interaction Dataset)
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Method Acc. (%) Modality Method | Acc. (%)
Joint Features [1] 80.3 RGB HR [4] 88.4
Clips+CNN+MTLN [2] | 93,5 PKM[5] | 933
LSTM+FA+VF [3] 95.0 RGB+skeleton| PA-DRL [6] 96.7
PJD-BiLSTM 94.0 PJD-BILSTM | 91.9
FCGC-BiLSTM 95.1 skeleton [FCGC-BIiLSTM| 92.7
PJD+FCGC 96.8 PJD+FCGC | 94.4

(a) PJD-BILSTM on 2D (b) FCGC-BiLSTM on 2D
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