Learning To Find Good Correspondences Of Multiple Objects
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Introduction Proposed Method Experiment

 Given RGB-D templates, how to efficiently detect the object? * Learning-based Facet Network  Comparison to existing methods
- Sequential RANSAC, Inlier Prediction Network by Yi et al.
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* 3D rotation space quantization via a regular icosahedron.

* Post-processing And Object Detection
- adaptive thresholding
- RANSAC-based clustering
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We say that an object belongs to a facet when the pose of
the object is associated with a rotation vector pointing
towards this facet.
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