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Problem
Due to the lack of training samples for each
task, few-shot meta-learners are more vulnera-
ble to adversarial attacks than regular models.
In this work we study on a typical meta-learner,
Model-Agnostic Meta-Learning(MAML),
to explore adversarial robustness improvement
of meta-learners.

Basic Concepts
Adversarial attack is a technique that at-
tempts to fool models by supplying deceptive
input. The objective of mainstream white-box
attack A is to maximize loss on perturbed ex-
ample with perturbation restriction, which can
be expressed formally as:

A(x)→ max
xa:||xa−x||≤ε

LCE(xa) (1)

Correspondingly adversarial robustness is to
evaluate the ability of defending against an ad-
versary who will attack the model.

Related Works
Adversarial attacks:
FGSM The attack generates adversarial exam-
ples xa via a one-step gradient using the loss
function L of victim model:

xa = x+ εsign(∇xL(x, y)). (2)

The multi-step version of FGSM is PGD attack.
C&W In Carlini & Wagner’s method the at-
tack is viewed as an optimization problem which
solves

min
xa
‖x− xa‖p − cL(xa, y). (3)

Adversarial robustness of meta-learners:
ADML The method fine-tunes tasks to gener-
ate extra adapted parameters, and utilizes an-
tagonistic correlations to make the inner gra-
dient update and the meta-update arm-wrestle
with each other.
Adversarial Querying(AQ) It was found that
attacking both support and query data like
ADML is not necessary and relatively time-
consuming. In AQ, only query data is perturbed
to harden several meta-learning models.
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Focal Loss for Adversarially Trained Meta-learner
Since we can use cross entropy loss LCE to represent focal loss as

LFL = (1− pt)γ(−log(pt)) = (1− exp(−LCE))γ · LCE (4)

and regard the termMFL = (1−exp(−LCE))γ as modulating factor. When applied to meta-learner,
the loss terms in formula (4) represent sum of loss on query examples in the task rather than a
single example. Considering that the objective of mainstream white-box attack A is formula (1), we
introduce a fixed adversary to describe adversarial robustness of a task τ :

LAR(τ) = max{LCE(fθτ ,A(xq))− LCE(fθτ , xq), δ} (5)

where δ > 0 is a small number which ensures positivity of LAR. We utilize such loss with multiple k
to replace LCE in the modulating factor MFL of focal loss (4), and give definition of our modulating
factor based and task-based adversarial focal loss LTAFL on each task τ :

MTAFL(τ) = (1− exp(−kLAR(τ)))γ ,LTAFL(fθτ , xq) =MTAFL(τ) · LCE(fθτ ,A(xq)) (6)

For a batch of tasks, the modulating factors MTAFL(τ) are linearly normalized within the batch.
Such factors are not function of θ to be minimized during gradient descent optimization in MAML.

Experimental Design and Results
As shown in Table 1, images with small perturbations generated by any attack can fool the model to
produce nearly no correct classification. It is demonstrated that our method achieves better results
than baseline defenses, ADML and AQ. Our method can improve robust accuracy by at least about
0.5% compared with baselines. The promotion can reach up to 1% on part of test cases.

Table 1: Robust accuracy against three typical attacks on MiniImageNet dataset.

Model/Attack
MiniImageNet dataset (5-way 1-shot)

PGD MI-FGSM C&W

MAML 0.42± 0.06% 0.01± 0.01% 14.38± 0.36%

ADML 28.53± 0.48% 28.19± 0.56% 26.77± 0.41%

AQ 28.20± 0.48% 27.94± 0.54% 26.82± 0.42%

TAFL(ours) 29.53± 0.60% 28.94± 0.61% 27.75± 0.44%

We plot the distribution of LAR(τ)
over tasks when testing different de-
fense methods in figure above. Here
100 batches of tasks are sampled to es-
timate the distribution via kernel den-
sity estimation(KDE) method. Com-
pared with other two baselines AQ
and ADML, our proposed TAFL can
apparently reduce the proportion of
tasks with high LAR(τ) when attacked
by same PGD attack. This actually
benefits from the feature of focusing
more on tasks with high LAR(τ) in our
method.
As for parameter sensitivity, we eval-
uate the performance of TAFL under
different parameters γ and k. The
model achieves higher performance by increasing k or γ at the beginning, which means the focusing
effect appears. However, the performance declines when γ continues to rise. It can be interpreted
that the model with high γ overly ignores and performs poorly on tasks with low LAR. The impact
of parameter k is much smaller and almost irregular unlike γ.


