
Abstract
In this study we investigate a textural processing method of electroencephalography (EEG) signal as a indicator to estimate the driver’s vigilance 
in a hypothetical Brain-Computer Interface (BCI) system. The novelty of the solution proposed relies on employing the one-dimensional Local 
Binary Pattern (1D-LBP) algorithm for feature extraction from pre-processed EEG data. From the resulting feature vector, the classification is 
done according to three vigilance classes: awake, tired and drowsy. The claim is that the class transitions can be detected by describing the 
variations of the micro-patterns’ occurrences along the EEG signal. The 1D-LBP is able to describe them by detecting mutual variations of the 
signal temporarily ”close” as a short bit-code. Our analysis allows to conclude that the 1D-LBP adoption led to significant performance 
improvement and capturing theclass transitions from the EEG signal is effective, although the overall performance is not yet good enough to 
develop a BCI for assessing the driver’s vigilance in real environments.
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• 1D-LBP first application to driver’s state monitoring. 
• Introduction of novel performance parameters for the transition's 

detection and the related time delay. 
• Strong effectiveness of the proposed method in detecting the 

awake-to-tired transitions (only 6 s of delay and the best hit rate).  
• Overall performance is not yet good enough to develop a BCI for 

assessing the driver’s vigilance in real environments.  

Conclusions

• SEED-VIG dataset [1]: 23 subjects that were asked to drive for 
approximately two hours in a simulated scenario and abstain from 
assuming caffeine, tobacco, and alcohol before the experiment. 

• 1D-LPB method and DE method [1] were applied for the feature 
extraction. 

• Three vigilance classes, based on the PERCLOS index, were 
defined: 

• Awake class: PERCLOS < 0.35; 
• Tired class: 0.35 ≤ PERCLOS < 0.7 
• Drowsy class: PERCLOS ≥ 0.7 

• Two classification models: the linear Support Vector Machine (SVM) 
and the SVM with a Gaussian kernel (RBF). 

To evaluate the classifier’s temporal response, we defined new metrics 
to determine the system’s performance in awake to tired (AT) and tired 
to drowsy (TD) transitions: 
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Experimental Protocol

Electroencephalography signal processing based on textural features for 
monitoring the driver’s state by a Brain-Computer Interface

A system for drowsiness detection

Starting from Ref. [1], which developed a multimodal approach for 
vigilance estimation regarding temporal dependency and combining 
EEG and forehead EOG in a simulated driving environment, we 
wanted to exploit the temporal evolution of the mental state during the 
transition from an awake to a drowsy state, to detect the event and 
alert the driver.  

We hypothesize that these transitions can be represented by a 
sequence of a set of bit-codes computed by the one dimensional 
version of the Local Binary Pattern operator (1D-LBP) [2]. The analysis 
is done over a given time window, named epoch.  

The goal is to identify the epochs where the subject is getting tired or 
falling asleep and send a signal (e.g. an audio alarm) to wake the 
driver up. The second point is to investigate if this representation can 
generalize the drowsiness detection to any user or requires user-
specific settings.

1D-LBP is compared to DE in terms of accuracy in classification. 
Results for generic user tests show how a generic user system could 
have very low performance. 

44 

The detection of this transition is very accurate, especially for the 1D-
LBP method. The content of each cell is written as: "mean ± standard 
deviation". 

The comparison with the previous table shows how this status change 
is detected less than the awake to tired transition. However the use of 
the 1D-LBP features with respect to the state of the art considerably 
increases the detection of this transition. 
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The awake class is more confused with the tired class. The low 
confusion between awake and drowsy classes is a positive result for 
the BCI operation.

Results

Awake to tired transition
Metric 1D-LBP (linear) 1D-LBP (RBF) DE (RBF)
HR [%] 96,2 ± 6,3 98,1 ± 2,7 92,4 ± 8,7

ZDHR [%] 72,8 ± 15,1 73,4 ± 13,2 70,7 ± 16,8
MHD [s] 16,55 ± 19,97 6,52 ± 5,66 10,35 ± 8,72

Tired to drowsy transition
Metric 1D-LBP (linear) 1D-LBP (RBF) DE (RBF)
HR [%] 86,8 ± 13,4 80,1 ± 18,8 48,8 ± 24,9

ZDHR [%] 31,1 ± 17,6 20 ± 14,1 13,8 ± 10,08
MHD [s] 70,96 ± 58,65 66,4 ± 43,47 118,64 ± 98,21

False hit rates [%]
Awake misclassified as 1D-LBP (linear) 1D-LBP (RBF) DE (RBF)

Tired 52,25 ± 15,66 56,21 ± 14,1 74,12 ± 15,96
Drowsy 6,52 ± 10,59 8,79 ± 11,55 5,45 ± 7,03

Tired or drowsy 58,77 ± 15,76 65 ± 15,63 79,57 ± 17,14

To test the BCI performance, we carried 
out two types of tests: 
• User-specific: we train and test the 
system on the same group of users, a 
common approach when designing BCI 
interfaces.  
• Generic user: we train the system on 
a user population that is totally different 
from that involved for the final use.
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