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extract rich semantic information of large corpus. On the other i ion with KGs :
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occurrence in large corpus and outside information such as 1 Y ) I,: OO0 :
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CoNLL 2003, and SNLL The experiment results show that CKG Creoge ) [ in ) (ot ) - [Comarkets )i [ Fomeeemmeesssoosmssisnissess !

achieves SOTA 89.2 on SQuAD compared with SAN (84.4), ELMo
(85.8), and BERT ,.. (88.5).
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Fig. 2: Partial Knowledge Graph from Dbpedia. The figure shows
that ‘apple’ could be a kind of food, as well as a company. We can
get the precise meaning of ‘apple’ by the neighbours around it.

Fig. 1: Architecture of CKG, which consists of two main parts (i.e.,
Extractor and Aggregator).

TABLE I: Results of various models on FIGER(%)

NFGEC | NFGEC | ERNIE

Model | Anentive) | LSTM) | (tsinghua) | CXC
Acc. 5453 55.60 57.10 | 58.84

Macro 74.76 75.15 76.51 76.23
Micro 71.58 71.73 7339 | 7524

TABLE III: Comparison of models in word similarity with rank
of sepearman. And the comparison of word analogy in semantic,
syntactic, average.

TABLE II: Comparison among CKG+ELMo and other models in _Fig. 4 Th.e detailed
QQP, SST-5, and MRPC tasks information on the Baseline Semantic | Syntactic | Average | Rank of Spearman
dataset of SNLI. The
— [ Pre-OpenAl | BILSTM+ ERNIE ' ’ CBOW 73.58 65.95 69.5 73.25
Baseline SOTA ELMo+Attn | (tsinghua) upper figure
QQP 932 904 95 represents the SG 65.62 56.61 60.64 68.69
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- . - training and test in KG+Glo Ve 834 69. K3 9.
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QQP 904 927 932 the lower figure
Lidqe 889 882 L indicates the losses of
SSTS 704 702 723 indicates
them. Task GloVe | ELMo | CKG+GloVe | CKG
el F— - SQuAD 80.8 85.8 85.6 88.7
o e s e S SNLI 88.1 89.1 90.2 91.1
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compares Sistems v SQuAD task. The “INCREASE” column lists improvement over our
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Sis \ o Trainloss - Testloss e meree SERT %G
\ models. ELMo has Model SAN ELMo CKG
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