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PoseCVAE: Architecture

Training Strategy

o Used a network with combined detection and pose estimator

o Pose detector output is 17 keypoints i.e. (x,y) coordinates
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Figure: Trajectory Extraction Pipeline

Figure: Output pose from RMPE
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rocessing Pipe

@ Keypoints obtained from pose estimator are not normalized
@ This causes increase in error due to closer entities

o To correct depth effect we propose bounding box normalization as

shown:
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Figure: Left: Without Normalization Right: With Normalization

High Level Flow Diagram
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Figure: Decoder
Imitating Abnormal Pose in Latent Space

@ To maximise the separation between normal and abnormal classes, we
split a decoder branch (Decy) which gives class probability, Py as
output

@ Normal Class is labelled ‘0", Abnormal class is labelled ‘1"

@ Different possibilities for the concatenated latent vector:

Zyormat = 2 ~ Q(.) || Enc(Gy) (1)
Zabnormal =z ~ N(0,1) || Enc(C}) (2)
Zatmormal = 2 ~ MoG || Ene(Cy) (3)

o The output of the classifier branch is mapped as follows:
Decy(MLPDec(Zpomat)) — 0 (4)

Decy (MLPDec(Zatnormar)) — 1 (5)

oss Function

Used combination of three loss functions during training:
@ Reconstruction Loss: Maximising the conditional expectation
translates into minimising MSE:

Lh(vio V) = || %= v ®)

o KL divergence Loss: Minimise the KLD to maximise the conditional
likelihood:

L5, 0) = KLIN (u( Yi. Ci). (Y, G)) [ N'(0.1)] (7)

o BCE loss: To make normal and abnormal latent samples more
distinguishable:

L5(yx P) = — (v log P + (1 — yi) log(1 — Py)) (8)

o Input: future trajectory to be predicted, length = 'T'
@ Condition: past trajectory of length ‘T"
@ Aim: learn conditional posterior and reconstruct the input given the
condition
We train in 3 stages:

@ Stage 1: Self Supervised Learning (Pre-training the Conv. Encoder
and decoder)
o Objective: Reconstruct the given trajectories
@ Stage 2: Unsupervised Learning (Training the PoseCVAE)
e Objective: Reconstruct the given trajectory given the past trajectory
and minimise the KLD (Maximising the conditional likelihood)
e Stage 3: Unsupervised with OoD sample generation and
minimise BCE (Fine-tuning the PoseCVAE framework)
e Objective: For normal latent points: Minimise the KLD, MSE and
BCE, for abnormal latent points: Minimise the MSE and BCE
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Input: Noise randomly sampled from standard normal
Condition: past trajectory, length = ‘T'

Output: future trajectory, length = “T'

Obtain the corresponding squared difference between prediction and
GT

Average it to obtain the final squared difference for a given time
instant (T + 1) and a given person (k), dx(T + 1)

Obtain 8, (i) ¥ ieTy. k. Here Ty is the entire track of person 'k’
Frame-level anomaly score, A(tg), at t = tp , is obtained as shown:

Afto) 7;;“232)!5’“0) (9)

Here 5(ty) refers to the set of all person IDs that appear in the video at
t=t

Result: AUC Score

HR-Avenue HR-ShanghaiTech HRIITB
Hasan et al. [4] 84.80 60.80 -
Liu et al. [2] 86.20 72.70
Luo et al. [5]
Morais et al. [6] 86.30 75.40 68.07
Radrigues et al. [3]" 88.33 77.04
Ours 87.78 75.86 70.60
Avenue ShanghaiTech IITE Corridor
Hasan et al. [4] 70.20 69.80 -
Liu et al. [2] 84.90 72.80 64.65
Luc et al. [5] 81.71 - 68.00
Morais et al. [6] B 73.40 64.27
Rodrigues et al. [3]* 82.85 76.03 67.12
Ours 8210 74.90 67.43
T Predictions/Iteration ~ AUC
3 only 2 72.05%
Rodrigues et al,[3] 3&5 4 73.39%
(Multi-timescale) 35&13 6 75.65%
3513 & 25 8 77.04%
Ours (One-timescale) 7 1 75.86%

Table: Frame-level AUC score comparison between (3] and Our method on
HR-ShanghaiTech for different timescales
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Figure: Frame-level anomaly score plot, Video 3 from the test set, HR-Avenue

(HR version of Avenue Dataset[1]). Notice the frame-level anomaly score is lower
for normal frames and shoots up for abnormal frames.

sult: Visualizatiol

Figure: Green skeleton is from the predicted trajectory and Blue one is from the
ground truth. Notice the greater dissimilarity between the two skeletons for
abnormal motiol

/ poses.

Study: Effect

(b) Trained with St

(a) Trained withont Stage 3

Figure: Latent space representation of the test set trajectories obtained from
PoseCVAE post- training completion. Notice the increase in the separation
between the normal and abnormal trajectory classes after introduction of stage 3
in the training strategy.
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