PoseCVAE: Anomalous Human Activity Detection

Yashswi Jain*, Ashvini Kumar Sharma*, Rajbabu Velmurugan and Biplab Banerjee Indian Institute of Technology Bombay, India 400076

Preprocessing Pipeline: Trajectory Extraction

Used a network with combined detection and pose estimator Pose detector output is 17 keypoints i.e. (x,y) coordinates

Figure: Trajectory Extraction Pipeline

Figure: Output pose from RMPE

Preprocessing Pipeline: Normalization

- Keypoints obtained from pose estimator are not normalized
- This causes increase in error due to closer entities
- To correct depth effect we propose bounding box normalization as shown

$$Y_{out} = \left(\frac{Y_{pred} - Y_c}{Width}\right) Y_{hyp} + Y_{centre}$$
$$X_{out} = \left(\frac{X_{pred} - X_c}{Heinht}\right) X_{hyp} + X_{centre}$$

Figure: Left: Without Normalization Right: With Normalization

PoseCVAE: Architecture

Figure: Decoder

Imitating Abnormal Pose in Latent Space

- To maximise the separation between normal and abnormal classes, we split a decoder branch (Dec_1) which gives class probability, P_k as output
- Normal Class is labelled '0', Abnormal class is labelled '1'
- Different possibilities for the concatenated latent vector;

$Z_{normal} \equiv z \sim Q(.) \mid\mid Enc(C_k)$	(1)
$Z_{abnormal} \equiv z \sim \mathcal{N}(0, I) \mid\mid Enc(C'_k)$	(2)
$\tilde{Z}_{abnormal} \equiv z \sim MoG \mid\mid Enc(C_k)$	(3)

(4)

(5)

(6)

• The output of the classifier branch is mapped as follows:

 $Dec_1(MLPDec(Z_{normal})) \rightarrow 0$ $Dec_1(MLPDec(\tilde{Z}_{abnormal})) \rightarrow 1$

Loss Function

- Used combination of three loss functions during training:
- · Reconstruction Loss: Maximising the conditional expectation translates into minimising MSE:

$$L_1^k(Y_k,\hat{Y}_k) = \left|\left|\hat{Y}_k - Y_k
ight|
ight|_2^2$$

. KL divergence Loss: Minimise the KLD to maximise the conditional likelihood:

$$L_2^k(\mu, \sigma) = \mathcal{KL}[\mathcal{N}(\mu(Y_k, C_k), \sigma(Y_k, C_k)) || \mathcal{N}(0, I)]$$
(7)

- BCE loss: To make normal and abnormal latent samples more distinguishable:
 - $L_{3}^{k}(y_{k}, P_{k}) = -(y_{k} \log P_{k} + (1 y_{k}) \log(1 P_{k}))$ (8)

Training Strategy

- Input: future trajectory to be predicted, length = 'T'
- Condition: past trajectory of length 'T'
- Aim: learn conditional posterior and reconstruct the input given the condition

We train in 3 stages:

- Stage 1: Self Supervised Learning (Pre-training the Conv. Encoder and decoder)
- · Objective: Reconstruct the given trajectories
- Stage 2: Unsupervised Learning (Training the PoseCVAE) • Objective: Reconstruct the given trajectory given the past trajectory and minimise the KLD (Maximising the conditional likelihood)

• Stage 3: Unsupervised with OoD sample generation and minimise BCE (Fine-tuning the PoseCVAE framework)

 Objective: For normal latent points: Minimise the KLD, MSE and BCE, for abnormal latent points: Minimise the MSE and BCE

Inference: Frame-level Anomaly Score

- Input: Noise randomly sampled from standard normal
- Condition: past trajectory, length = 'T'
- Output: future trajectory, length = 'T'
- · Obtain the corresponding squared difference between prediction and
- Average it to obtain the final squared difference for a given time instant (T + 1) and a given person (k), $\delta_k(T + 1)$
- Obtain $\delta_k(i) \forall i \in T_k, \forall k$. Here T_k is the entire track of person 'k'
- Frame-level anomaly score, Δ(t₀), at t = t₀, is obtained as shown:

 $\Delta(t_0) = \max_{i \in \mathcal{S}(t_0)} \delta_i(t_0)$

(9)

Here $S(t_0)$ refers to the set of all person IDs that appear in the video at $t = t_0$

Result: AUC Score

	HR-Avenue	HR-ShanghaiTech	HR-IITB
Hasan et al. [4]	84.80	69.80	-
Liu et al. [2]	86.20	72.70	-
Luo et al. [5]	-	-	-
Morais et al. [6]	86.30	75.40	68.07
Rodrigues et al. [3]*	88.33	77.04	-
Ours	87.78	75.86	70.60
	Avenue	ShanghaiTech	IITB Corrido
Hasan et al. [4]	70.20	69.80	-
Liu et al. [2]	84.90	72.80	64.65
Luo et al. [5]	81.71	-	68.00
Morais et al. [6]	-	73.40	64.27
Rodrigues et al. [3]*	82.85	76.03	67.12
Ours	82.10	74.90	67.43
	Т	Predictions/Iter	ation AUC
	3 only	2	72.05%
Rodrigues et al.[3]	3 & 5	4	73.39%
(Multi-timescale)	3,5 & 13	6	75.65%
	3,5,13 & 2	5 8	77.04%
Ours (One-timescale) 7	1	75.86%

HR-ShanghaiTech for different timescales

Results: Frame Level Anomaly Score

(HR version of Avenue Dataset[1]). Notice the frame-level anomaly score is lower for normal frames and shoots up for abnormal frames.

Result: Visualization

Figure: Green skeleton is from the predicted trajectory and Blue one is from the ground truth. Notice the greater dissimilarity between the two skeletons for abnormal motion/ poses

Ablation Study: Effect of Multistage Training

Figure: Latent space representation of the test set trajectories obtained from

PoseCVAE post- training completion. Notice the increase in the separation between the normal and abnormal trajectory classes after introduction of stage 3 in the training strategy.

References

[1] C. Lu. J. Shi, and J. Jia, "Abnormal event detection at 150 fps in matlab," in Proceedings of the IEEE internation conference on computer vision, pp. 2720-2727, 2013.

[2] W. Liu, W. Luo, D. Lian, and S. Gao, "Future frame prediction for anomaly detection-a new baseline," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6536-6545, 2018.

[3] R. Rodrigues, N. Bhargava, R. Velmurugan, and S. Chaudhuri, "Multitimescale trajectory prediction for abnormal human activity detection," in Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV) pp. 2626-2634, 2020 [4] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis, "Learning temporal regularity in video

sequences," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 733-742, 2016. [5] W. Luo, W. Liu, and S. Gao, "A revisit of sparse coding based anomaly detection in stacked mn framework," in Th IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[6] R. Morais, V. Le, T. Tran, B. Saha, M. Mansour, and S. Venkatesh, "Learning regularity in skeleton trajectories for anomaly detection in videos," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 11996-12004. 2019.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016. [8] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, "Rmpe: Regional multi-person pose estimation," in Proceedings of the IEEE.

International Conference on Computer Vision, pp. 2334-2343, 2017. [9] Y. Xiu, J. Li, H. Wang, Y. Fang, and C. Lu, "Pose flow: Efficient online pose tracking," arXiv preprin arXiv:1802.00977, 2018.

* These authors contributed equally