W Fixed Simplex Coordinates
for Angular Margin LoSsS
INn CapsNet

ICPR 2020 — January 2021

Rita Pucci, Christian Micheloni, Gian Luca Foresti, Niki Martinel
Department of Mathematics Computer Science and Physics
University of Udine

Machine 4«?»?%\
Learning and @ 5 9
|D Perception eams®




I!!!!L Image embedding and CapsNet

« An embedding: is a mapping of a discrete (categorical) variable to a vector of

continuous numbers
Deep Neural

« Neural network embeddings: reduce the dimensionality of categorical variables Network
and meaningfully represent categories in the transformed space |

« CNN-driven approach: we can obtain images embedding by taking the
intermediate output (before the classification layer) of a considered architecture

What if we apply CapsNet as Deep Neural Network encoder to extract the embedding?
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We identify in the magnitude of DigitCaps the Embedding of input image
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I!(I!!L CapsNet overview

DigitCaps
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DigitCaps is a matrix X € RV*P N
d_dimensional vectors from capsules

N is the number of classes
The image embedding is X = [|[xqll5 - Ixx]l2]:

the magnitude of each row (classes) of the
matrix X

» Maintains all the information from
A the digits of each capsule
X+ Provides a discriminative
embedding based on the
predicted class
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I“III PolyCapsNet:
iceR | CapsNet with maximal discriminativity = e

We want to train our model to enhance the intra-class compactness and inter-class
discrepancy among images _
Angular margin loss:
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reduces the geodesic distance between the image embedding (%)

and the vector centroid (w,) of the corresponding class ¢
The image embedding (%)

Softmax Function
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K: number of input samples i i C

dxN . - C . K es(cos(ec+m))
W € RV responsible of projecting the input Lanele = __Z log
embedding to the class space ang’e K ot es(cos(8c+m)) 4 Z]N=1 % s(cos(8j+m))

Does not encourage the similarity among intra-class samples and
the diversity among inter-class samples

Wang, F., et al. "Normface: L2 hypersphere embedding for face verification." (2017).
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!!!,!L Polytope stationary embedding

w. eW The angular margin loss introduces the need for a weight matrixw'to
C represent the class centroids described in an hyperspherical space of definition
W
Wo =~ 7w
Fixed Classifier: W1 = »
* Guaranteeing stationarity of the Wo = ¥
embedding Wg =y
. X
<
Polytopes (geometric object with "flat" sides): ) :
e Define weight matrix
* Maximal discriminability representation . t
Wn =

Fixed Weights

Pernici, F., et al. "Fix your features: Stationary and maximally discriminative embeddings using regular polytope (fixed classifier) networks." (2019)
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& L
il | Classification results G
. ICPR . mIp
Loss function MNIST CIFAR10 SmallNorb
L argin 99.33% 72.84% 66.98%
L argin4 Lrec 99.37% 73.11% 64.62%
L ongle 99.30% 70.61% 77.29%
Longle + L. 99.14% 68.97% 66.25%
Loangle + L arein 99.39% 68.96% 78.41%
Langle + L nargin +Lrec 99.39% 71.61% 81.44%
What if we use a learnable W matrix?
Classifier MNIST CIFAR10 SmallNorb
Fixed W with Simplex 99.39% 71.61% 81.44%
Learnable W 98.75% 50.38% 57.28%
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hank you for listening to this presentation!
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