

Neuron-based Network Pruning Based on Majority Voting

1. Overview

- The over-parameterized of deep neural networks present significant challenges for many applications.
- Most of the existing methods tend to compress the networks through multi-step procedures.
- To overcome these issues, we propose a method to prune the network's neurons based on our majority voting method during training.
- This mechanism helps to measure the importance of neurons and to prune them accordingly into the body of the learning phase.
- It also saves time that is needed for the initial training as well as the retraining phases.

2. Neuron Importance via Majority voting (MV)

- We aim to detect influential neurons in neural networks by evaluating their activation.
- A majority voting approach is introduced to determine the importance of neurons in each layer.
- The activation at each neuron is defined as:

$$t_{j}^{(i)}(x_{n}) = \sigma(b_{j}^{(i)} + \sum_{p} w_{p,j}^{(i-1)} t_{p}^{(i-1)}(x_{n})),$$

• Then the top largest activation neurons are set to 1 and others to 0 by:

$$v_j^{(i)}(x_n) = \begin{cases} 1 & \text{If argsort} (t_j^{(i)}(x_n))[1:l] \\ 0 & \text{Otherwise} \end{cases}$$

• After that, we sum over columns (examples) to score the number of times that neuron is one of the top neurons for given examples.

$$y_{j}^{(i)} = \sum_{n=1}^{N} v_{j}^{(i)}(x_{n})$$

$$\psi_{j}^{(i)} = y_{j}^{(i)} = \begin{cases} 1 & \text{If argsort } (y_{j}^{(i)})[1:k*J] \\ 0 & \text{Otherwise} \end{cases}$$

• We set a set of neurons, which have the largest voting scores, to 1 and the remaining to 0.

• We will come up with a binary vector that indicates whether such neurons are important or not.

A. Alqahtani, X. Xie, E. Essa, and M. W. Jones

3. Neuron-based Iterative Pruning

Algorithm 1 Pruning algorithm using Majority Voting (MV) **Input:** Training set (x, y), Validation set (\dot{x}, \dot{y}) , t, and k **Output:** A pruned model initialization best accuracy $\leftarrow 0$ for $e \leftarrow 1$ to E do Preform standard training procedure Preform weights update $accuracy \leftarrow model accuracy$ if $e \mod t = 0$ and accuracy > best accuracy then best accuracy \leftarrow accuracy for each layer do Compute the activation for each neuron Vote for largest activations Compute the amount of times a neuron has been voted Vote for k% of largest voting-score neurons Prune the non-important neurons end end end

4. Experimental Results

- The proposed method was trained using Keras and Tensorflow in Python.
- Our proposed method is evaluated using two computer vision benchmark datasets: MNIST and CIFAR-10.
- For fully-connected models, the network architecture consists of three fully-connected layers:
 - (784-1000-1000-1000-10) for MNIST.
 - (3072-4000-1000-4000-10) for CIFAR-10.
- The model was trained end-to-end. No fine-tuning procedures.

5. Measuring Neuron Importance via Ablation

- Classification performance was used.
- The ablation refers to the removal of some parts of the model and the study of its performance. CIFAR-10

CHTHC-10					
	1st Layer	2nd Layer	3rd Layer	Cumulative Ablation	
Random	45.46%	61.84%	65.07%	21.39%	
Weights Sum	63.75%	67.47%	67.04%	48.62%	
Activation Mean	68.97%	68.47%	68.48%	64.75%	
Activation SD	69.49%	68.90%	69.22%	66.33%	
Activation <i>l</i> 1-norms	69.39%	68.71%	69.32%	65.94%	
Activation <i>l</i> 2-norms	69.45%	68.73%	69.31%	65.81%	
MV	69.77 %	69.39 %	69.66%	68.28 %	

MNIST

	1st Layer	2nd Layer	3rd Layer	Cumulative Ablation
Random	95.4%	97.96%	98.41%	85.32%
Weights Sum	95.00%	98.39%	98.57%	94.63%
Activation Mean	97.88%	98.52%	98.58%	97.98%
Activation SD	98.58%	98.73%	98.68%	98.44%
Activation <i>l</i> 1-norms	98.56%	98.72%	98.65%	98.40%
Activation <i>l</i> 2-norms	98.51%	98.73%	98.67%	98.37%
MV	98.68 %	98.75 %	98.76 %	98.68%

6. Pruning redundant Neurons during Training

• Our Pruning Method with fully-connected Network.

	FC		MV Pruning		
Dataset	Accuracy	n^W	Accuracy	n^W	
MNIST	98.78%	2,794K	98.88%	232K	
CIFAR10	71.90%	20,328K	74.21%	4,245K	

• Integrating our Pruning Method to Existing Sparse Neural Network.

	SC		MV Pruning		
Dataset	Accuracy	n^W	Accuracy	n^W	
MNIST	98.74%	89K	98.84%	34K	
CIFAR10	74.84%	278K	75.05%	214K	

- Extension to Convolutional Neural Networks
 - Our pruned model has reached a maximum of 90.12% accuracy compared to 89.30% accuracy, with only less than 5% of the CNN weights.

