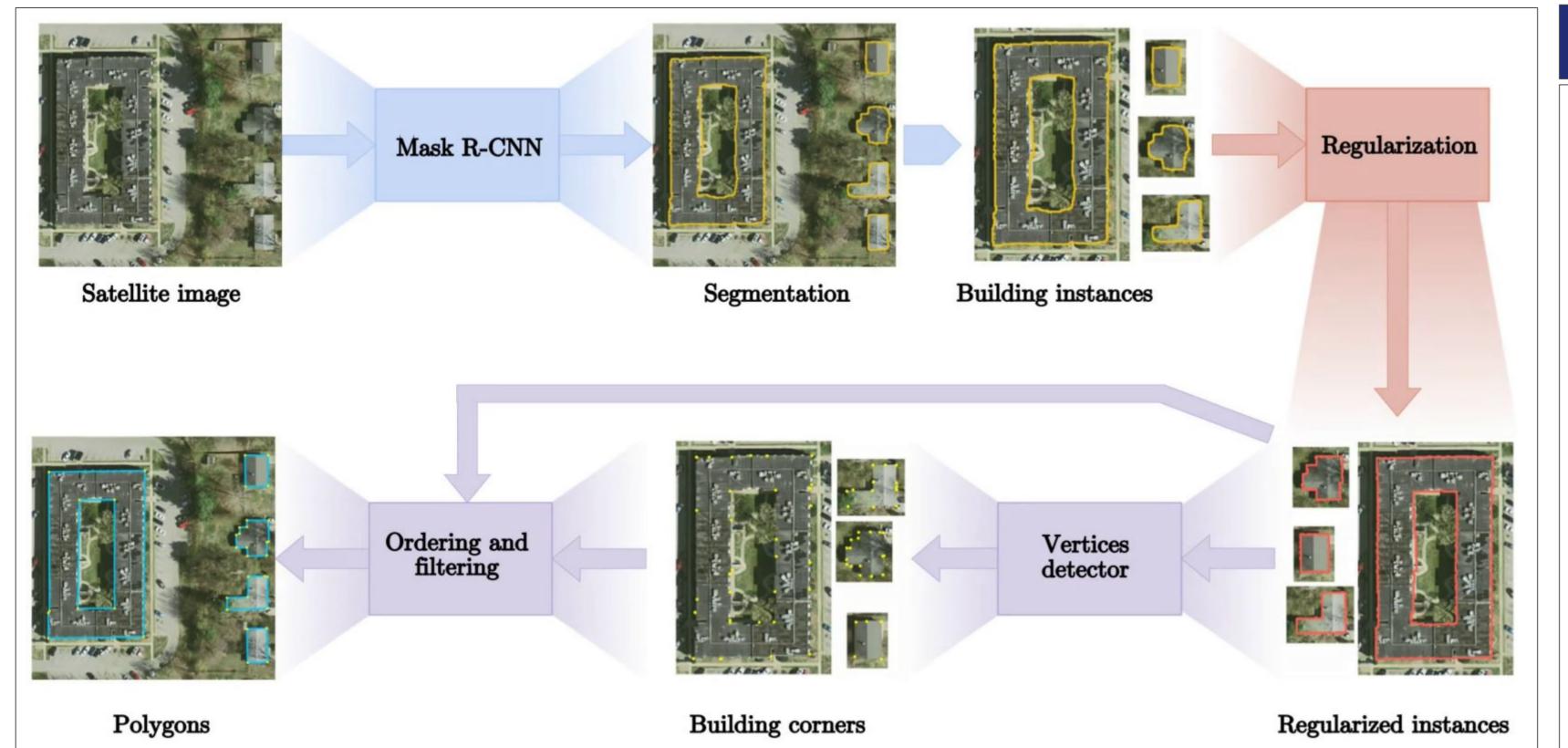


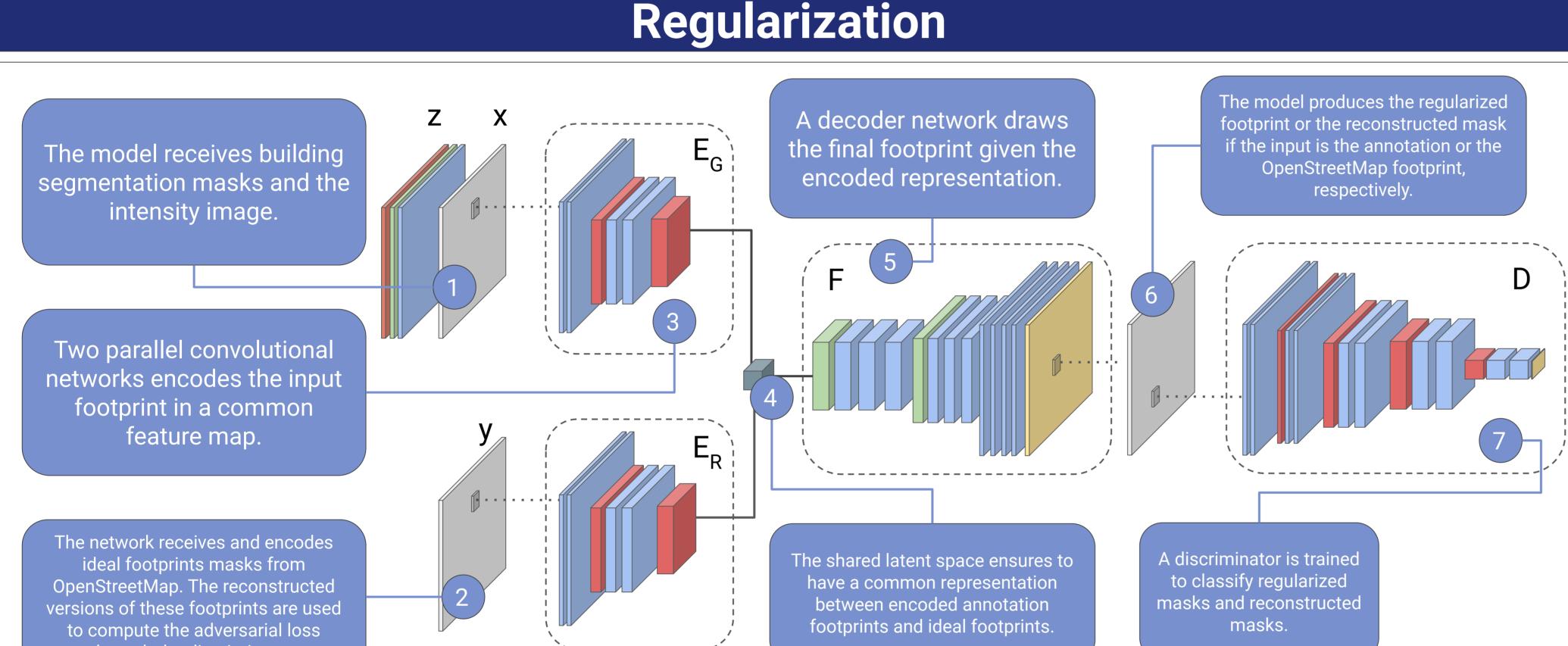
Machine-learned Regularization and Polygonization of Building Segmentation Masks

Stefano Zorzi, Ksenia Bittner and Friedrich Fraundorfer Institute of Computer Graphics and Vision, Graz University of Technology



Abstract

We propose a Deep Learning pipeline for automatic regularization and polygonization of building segmentation masks. Taking an image as input, we first predict building segmentation maps exploiting a generic instance segmentation network. A regularization network is then involved to perform a refinement of building boundaries to make them more realistic. Finally, we exploit a CNN adapted to predict sparse outcomes corresponding to building corners out of regularized building segmentation results. Experiments on three building segmentation datasets demonstrate that the proposed method is not only capable of obtaining accurate results, but also of producing visually pleasing building outlines parameterized as polygons.



Objective

Our objective contains three types of terms:

- Adversarial loss to force the autoencoder to produce regularized masks that look like ideal footprints. While the discriminator learns to classify regularized and reconstructed footprints the encoder-decoder network is trained to fool the discriminator in order to produce more realistic footprints.
- **Regularized losses** to further improve the footprint regularization exploiting the building image. We use two losses called *Potts loss* [3] and *Normalized Cut loss* [2, 3].

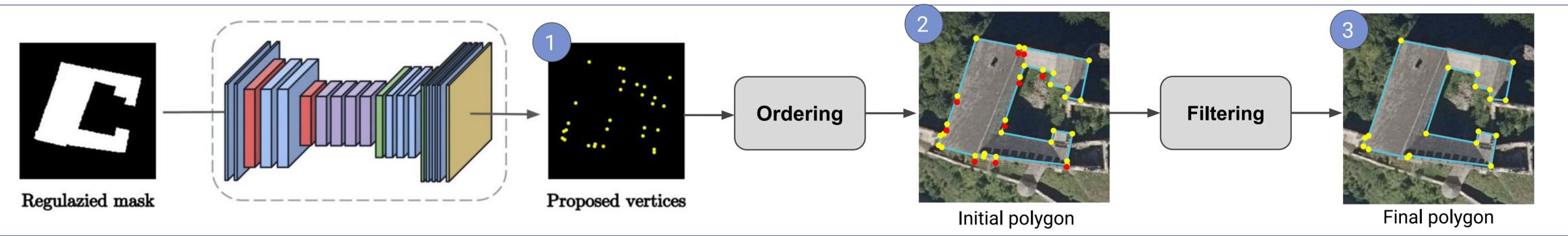
 $\mathcal{L}_{potts}(G) = \sum_{k} cut(\Omega_k, \Omega/\Omega_k) = \sum_{k} S^{k\intercal} W(1 - S^k)$

 $\mathcal{L}_{ncut}(G) = \sum_{k} \frac{cut(\Omega_k, \Omega/\Omega_k)}{assoc(\Omega_k/\Omega)} = \sum_{k} \frac{S^{k\tau}W(1-S^k)}{1^{\tau}WS^k}$

 $w_{ij} = e^{\frac{-||F(i) - F(j)||_2^2}{\sigma_I^2}} \cdot e^{\frac{-||X(i) - X(j)||_2^2}{\sigma_X^2}}$

 Reconstruction losses to obtain building footprint as close as possible to the input annotation. In this case, *binary cross*

Polygonization



Polygon extraction steps:

- 1. given the regularized building footprint, a CNN model detects all the building corners candidates (yellow vertices).
- 2. The vertices are then sorted to produce a valid set of polygon coordinates. Redundant corners which lie too close to a building edge are filtered (in red).
- 3. Final result.

Results

			-	INRIA											
			-	Bellingham Bloomington		Innst			Francisco Tyrol		rol	Overall			
			-	IoU	Acc	IoU	Acc	IoU	Acc	IoU	Acc	IoU	Acc	IoU	Acc
			R2UNet	70.30	97.04	72.94	97.40	73.48	96.85	76.29	91.85	75.92	97.84	74.57	96.20
			Zorzi et al. [7]	63.90	96.37	63.65	96.51	60.20	95.23	55.97	84.60	65.56	96.88	59.81	93.92
			Ours	70.36	96.99	73.01	97.36	73.34	96.77	75.88	91.55	76.15	97.84	74.40	96.10
The states	THE SECOND								0						
			-	SpaceNet							Overell				
			-	Jacksonville				Lo	Tampa			Over			20
			-	$\begin{array}{c c} IoU & Acc \\ \hline \mu & \sigma & \mu & \sigma \end{array}$		μ σ		Acc		IoU		A	$\frac{cc}{\sigma}$		
			R2UNet	72.85	7.077	96.54	1.105	$\frac{\mu}{70.74}$	6.056	μ 94.90	1.219	μ 71.80	6.670	<u>95.75</u>	1.406
			Zorzi <i>et al.</i> [7]	59.17	5.348	94.73	1.693	57.99	6.892	92.58	2.317	58.58	6.197	93.65	2.296
			Ours	70.90	7.551	96.29	1.169	69.04	6.587	94.90	1.286	69.97	7.146	95.50	1.463
				-	Dataset CrowdAI										
				Metho Baseline Baselariz											
					Baseline R2U-Net		Regulari				$\begin{array}{c c} \mu \\ \hline 80.44 \end{array}$	$\frac{\sigma}{16.10}$	$\frac{\mu}{95.86}$	$\frac{\sigma}{5.20}$	
				-	R2U-Net		- Zorzi e	t al		- -	76.95	15.34	93.80 94 75	5.20 5.47	
					R2U-Net		Our				79.87	15.93	95.57	5.28	
					R2U-Net		Zorzi e		Ou	ırs	76.67	13.37		5.14	
					R2U-Net		Our		Ou		80.03	14.24	95.55	5.09	
				_	Mask R-	CNN	-		-	-	73.22	17.84	94.38	4.77	
					Mask R-		Zorzi e			-	71.72	17.32	93.88	4.82	
					Mask R-		Our			-] 73.57	17.65	94.34	4.74	
					Mask R-		Zorzi e		Ou		72.13	13.82	92.57	4.80	
Segmentation	Regularization	Polygonization		_	Mask R-	CNN	Our	S	Ou	ırs	74.23	14.51	94.12	4.75	

Contacts and References

S. Zorzi and F. Fraundorfer, "Regularization of Building Boundaries in Satellite Images using Adversarial and Regularized Losses," IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2019.
Tang, Meng, et al. "Normalized Cut Loss for Weakly-supervised CNN Segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
Tang, Meng, et al. "On Regularized Losses for Weakly-supervised CNN Segmentation." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

https://www.tugraz.at/institutes/icg/research/team-fraundorfer/people/