Cross-Lingual Text Image Recognition via Multi-Task Sequence to Sequence Learning

Zhuo Chen1,2, Fei Yin1,2, Xu-Yao Zhang1,2, Qing Yang1,2, Cheng-Lin Liu1,2,3

1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences
3CAS Center for Excellence in Brain Science and Intelligence Technology

Introduction

Background

People traveling to or living in foreign countries often have trouble in recognizing foreign texts in natural scene. Thus, transforming text images to understandable information automatically has become an intense demand.

Cross-Lingual Text Image Recognition

- CLTIR: Recognizing texts in a source language and translating into a target language
- All schemes for handling this problem are cascaded
- Apart system is potentially error prone

Contribution

- We raise a new problem called CLTIR
- We propose a novel end-to-end multi-task system with two different sequence to sequence learning methods
- The proposed framework achieves promising results on the dataset of movie subtitle images

Methods

Multi-task learning

- Main task: cross-lingual text image recognition
- Auxiliary task: mono-lingual text image recognition

Sequence to sequence learning

- Attention based
- BLSTM + CTC

Experiments

Dataset

There was no existing text recognition dataset with label in other language. We finally get English-Chinese bilingual subtitles from 50 English animated films.

<table>
<thead>
<tr>
<th>Sets</th>
<th>Training</th>
<th>Validation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Movies</td>
<td>45</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>#Corpus</td>
<td>51,614</td>
<td>3,666</td>
<td>55,280</td>
</tr>
<tr>
<td>#En Vocab</td>
<td>13,608</td>
<td>1,679</td>
<td>13,823</td>
</tr>
<tr>
<td>#Zh Vocab</td>
<td>3,488</td>
<td>2,382</td>
<td>3,501</td>
</tr>
<tr>
<td>#Samples</td>
<td>450,000</td>
<td>50,000</td>
<td>500,000</td>
</tr>
</tbody>
</table>

Results on the CLTIR dataset

Compared with cascade system and single-task system, the multi-task system is better on both source and target language recognition task.

<table>
<thead>
<tr>
<th>System</th>
<th>Accuracy</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognition Model</td>
<td>98.05</td>
<td>—</td>
</tr>
<tr>
<td>Translation Model</td>
<td>—</td>
<td>43.73</td>
</tr>
<tr>
<td>Cascade System</td>
<td>—</td>
<td>41.84</td>
</tr>
<tr>
<td>Single-Task</td>
<td>—</td>
<td>38.64</td>
</tr>
<tr>
<td>Multi-Task</td>
<td>99.13</td>
<td>42.91 ± 1.07</td>
</tr>
</tbody>
</table>

Ablation study of encoder architecture

<table>
<thead>
<tr>
<th>Architecture</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG-19 [21]</td>
<td>42.91</td>
</tr>
<tr>
<td>ResNet-18 [22]</td>
<td>43.00</td>
</tr>
<tr>
<td>DenseNet-29 [23]</td>
<td>43.42</td>
</tr>
</tbody>
</table>