
Background – QSAR model

• Quantitative structure–activity relationship (QSAR) models extract relationships
from chemical structures and predict biological activities, such as toxicity,
solubility, and so on.

• Previous QSAR models utilized molecular descriptors to represent chemical
properties as vectors. Such molecular descriptors require additional processes
from inputs, such as the Simplified Molecular Input Line Entry System (SMILES).
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Methods

Component 1 - CNN layer

• A CNN layer serves as a shared hidden layer for multi-task learning.

• Input is a SMILES format No chemical descriptors required.

Component 2 – self-attention layer

• A Self-attention module focuses on long-range dependencies of a given input.

• No pre-training

Component 3 – discrete output layer

• Discrete output layers produce outputs for multiple tasks

• A balancing bias is applied to rectify the class-imbalance in the data

Results – Tox21, BBBP, and CLINTOX dataset

Our SA-MTL model exhibited the state-of-the-art performance in the Tox21 and several other datasets.
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Background - Contributions

• We present a Natural Language Processing (NLP) model that utilizes
SMILES as direct input.

• We explored the structural differences of existing transformer-variant
models and proposed a new self-attention based model.

• The representation learning performance of our self-attention module was
evaluated in a multi-task learning environment using several chemical datasets.

Comparison with other studies that used transformer-variants

1-b) Smiles Transformer Model [1]

• The Smiles Transformer model uses the intermediate result obtained from pre-training

• If the pre-training objective is not closely related to the target task, the pre-training
process may hurt the target task's performance.

1-c) Transformer-CNN Model [2]

• The Transformer-CNN model also implements the pre-training approach.

• The model contains text-CNN block for several CNN layers after the self-attention.

1-d) BiLSTM-SA Model [3]

• The concept of the BiLSTM-SA model implements a self-attention module without the
multi-task learning scheme.

Ablation study

• We performed to evaluate the effectiveness of several features in SA-MTL.

• The self-attention module and the multi-task learning scheme are two essential components of our model.

• The first component is just a CNN layer, however, we showed that the CNN layer has significant role for learning 
the shared factors of multiple tasks.

• The multi-head and the position encoding features did not have a significant impact on chemical compound 
prediction. More than one multi-head seems to have an over-parameterization issue for a certain task. And the
position encoding has limited effects because an atom’position does not convey grammatical meanings.

* Github Repository : https://github.com/arwhirang/sa-mtl
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Tox21

• For the Transformer_CNN model, placing the CNN layers after the self-
attention component was not an appropriate option to enhance 
performance.

• Both of the Transformer_CNN model and the Smiles_Transformer model 
used the self-attention component for pretraining. The objective of the pre-
training approach should resemble the target task.

BBBP/CLINTOX

• Our SA-MTL model could achieve AUC score of 0.966. One of the reasons 
for the high score is the positive to negative ratio. The positive-to negative 
ratio of this BBBP and CLINTOX dataset are different from the other
datasets.


