

Predicting Chemical Properties using Self-Attention Multi-task Learning based on SMILES Representation

Sangrak Lim, Yong Oh Lee

KIST Europe, Korea Institute of Science and Technology, Campus E7 1, 66123 Saarbrücken Germany

Background – QSAR model

- Quantitative structure-activity relationship (QSAR) models extract relationships from chemical structures and predict biological activities, such as toxicity, solubility, and so on.
- Previous QSAR models utilized molecular descriptors to represent chemical properties as vectors. Such molecular descriptors require additional processes from inputs, such as the Simplified Molecular Input Line Entry System (SMILES).

Methods

Component 1 - CNN layer

- A CNN layer serves as a shared hidden layer for multi-task learning.
- Input is a SMILES format \rightarrow No chemical descriptors required.
- **Component 2 self-attention layer**

Background - Contributions

- We present a Natural Language Processing (NLP) model that utilizes \bullet SMILES as direct input.
- We explored the structural differences of existing transformer-variant models and proposed a new self-attention based model.
- The representation learning performance of our self-attention module was evaluated in a multi-task learning environment using several chemical datasets.

- A Self-attention module focuses on long-range dependencies of a given input.
- No pre-training

Component 3 – discrete output layer

- Discrete output layers produce outputs for multiple tasks
- A balancing bias is applied to rectify the class-imbalance in the data \bullet

Comparison with other studies that used transformer-variants

1-b) Smiles Transformer Model [1]

- The Smiles Transformer model uses the intermediate result obtained from pre-training
- If the pre-training objective is not closely related to the target task, the pre-training process may hurt the target task's performance.

1-c) Transformer-CNN Model [2]

- The Transformer-CNN model also implements the pre-training approach.
- The model contains text-CNN block for several CNN layers after the self-attention.

1-d) BiLSTM-SA Model [3]

 The concept of the BiLSTM-SA model implements a self-attention module without the multi-task learning scheme.

Results – Tox21, BBBP, and CLINTOX dataset

Our SA-MTL model exhibited the state-of-the-art performance in the Tox21 and several other datasets.

Tox21

- For the Transformer_CNN model, placing the CNN layers after the selfattention component was not an appropriate option to enhance performance.
- Both of the Transformer_CNN model and the Smiles_Transformer model used the self-attention component for pretraining. The objective of the pretraining approach should resemble the target task.

BBBP/CLINTOX

Our SA-MTL model could achieve AUC score of 0.966. One of the reasons for the high score is the positive to negative ratio. The positive-to negative ratio of this BBBP and CLINTOX dataset are different from the other datasets.

- We performed to evaluate the effectiveness of several features in SA-MTL.
- The self-attention module and the multi-task learning scheme are two essential components of our model.
- The first component is just a CNN layer, however, we showed that the CNN layer has significant role for learning the shared factors of multiple tasks.

				TA	BLE I	
				DATASE	T STATISTICS	
-	IABLE III		Dataset	Num of Classes	Ave. Instances	Pos/Neg ratio [†]
TOX21 EVALUATION RESULTS COMPARED TO OTHER MODELS		Tox21	12	7831	1:13.4	
6			BBBP	1	2031	1:0.25
Comparison results on Train and Test Data			CLINTOX	2	1478	1:0.06 1:12.25*
Model	Notes	Average AUC	[†] The positiv	e to pegative ratio is	the total sum valu	e of the training data
SA-MTL(OURS)	random split	0.9	if the number of classes is more than one except CLINTOX			
SCFP	cross-validation	0.877	* The CLINTOX has two classes that have different Pos/Neg ratio.			
FP2VEC	random split	0.876	TABLE VI			
BiLSTM-SA	stratified random split	0.842	BBBP AND CLINTOX EVALUATION RESULTS COMPARED TO OTHER			
GC	random split	0.829	MODELS			
Transformer_CNN	cross-validation & augmented	0.82	Dataset	Model	Notes	Average AUC
Smiles_Transformer	random split	0.802	BBBP	SA-MTL(OURS)	scaffold split	0.954
Comparison results on Score Data				SA-MTL(OURS)	random split	0.945
Model	Notes	Average AUC		Transformer_CNN	CV & augmente	d 0.92
SA-MTL(OURS)	without ensemble	0.806		KernelSVM	scaffold split	0.729
SA MTL (OURS)	with ensemble	0.842		FP2VEC	random split	0.713
SA-MIL(OURS)	with ensemble	0.042	CLINITON	Smiles_Transformer	scaffold split	0.704
DeepTox[27]	with ensemble	0.837	CLINIOX	SA-MIL(OURS)	random split	0.992
SCFP	without ensemble	0.813		SA-MIL(OURS)	scaffold split	0.99
Note: The best served	a on the test set are bightighted	n hald		Smiles_Transformer	scattold split	0.954
Note: The best result	is on the test set are highlighted i	n dold.		Weave	random split	0.832
				Transformer_CNN	CV & augmente	d 0.77
			Note: The be	est results on the test	set are highlighted in	n bold.

	Modified Features	Average AUC
SA-MTL		0.9
SA-MTL	- Two-Character Embedding	0.888
SA-MTL	- Multi-task Learning	0.871
SA-MTL	- Self Attention Module	0.798
SA-MTL	- CNN	0.824
SA-MTL	CNN<>RNN*	0.895
SA-MTL	Discrete Output Layer<>Max Pooling**	0.865
SA-MTL	+ Multi-head (5)	0.892
SA-MTL	+ Position encoding	0.892

 The multi-head and the position encoding features did not have a significant impact on chemical compound prediction. More than one multi-head seems to have an over-parameterization issue for a certain task. And the position encoding has limited effects because an atom'position does not convey grammatical meanings.

* Github Repository : https://github.com/arwhirang/sa-mtl

References

- 1) Honda, S., Shi, S., & Ueda, H. R. : SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery. In: arXiv preprint arXiv:1911.04738. (2019).
- Karpov, P., Godin, G., & Tetko, I. V. : Transformer-CNN: Fast and Reliable tool for QSAR. arXiv preprint arXiv:1911.06603. (2019). 2)
- 3) Zheng, S., Yan, X., Yang, Y., & Xu, J. : Identifying Structure–Property Relationships through SMILES Syntax Analysis with Self-Attention Mechanism. In: Journal of chemical information and modeling, 59(2), 914-923. (2019).

Acknowledgement

This study is supported by National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CAP-17-01-KIST Europe) and the Basic research grant (12001).