Enhanced Feature Pyramid Network for Semantic Segmentation

Mucong Ye, Jingpeng Ouyang, Ge Chen, Jing Zhang*, Xiaogang Yu College of Software, Beihang University, Beijing, China

Observation

- 1. Semantic gap between shallow and deep features
 - · Shallow feature layers contain low-level appearance information (e.g., edges, lines, and corners)
 - · Deep layers contain more semantic information to distinguish different classes

shallow layer

deep layer

2. In the encoder-decoder architecture, a skip connection is frequently used to aggregate multi-scale context information

- The semantic difference between the shallow features and the deep features hinders the effective fusion of the different features
- Simply combining the shallow feature with the deep feature will bring some background "noise", which will affect the robustness of the feature

Networks

- Enhanced Feature Pyramid Network (EFPN): To bridge the semantic gap and realize the effective fusion of multi-layer features
- Global fusion model (GFM): Remedy the drawback of U-shape networks that top-down signals are gradually diluted

- Semantic Enhancement Module (SEM): Enhance the shallow features
- Edge Extraction Module (EEM): Based on attention
- Context Aggregation Module (CAM): Better aggregation

Experiment & Conclusion

- First, it is verified that the direct use of jump connections to fuse shallow features and deep features will affect the robustness of features
- Second, the effectiveness of global fusion module in encoder branch is further evaluated
- Finally, we prove the effectiveness of EFPN in bridging the semantic gap through experiments

(c) Baseline

(d) Ours