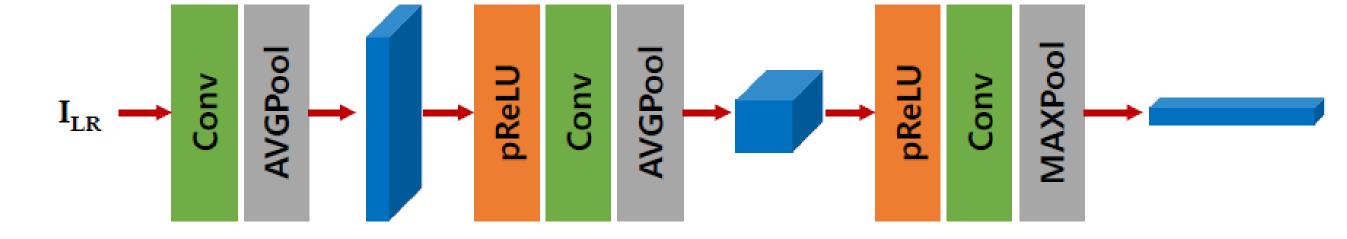


Single Image Super-Resolution with Dynamic Residual Connection Karam Park, Jae Woong Soh, Nam Ik Cho

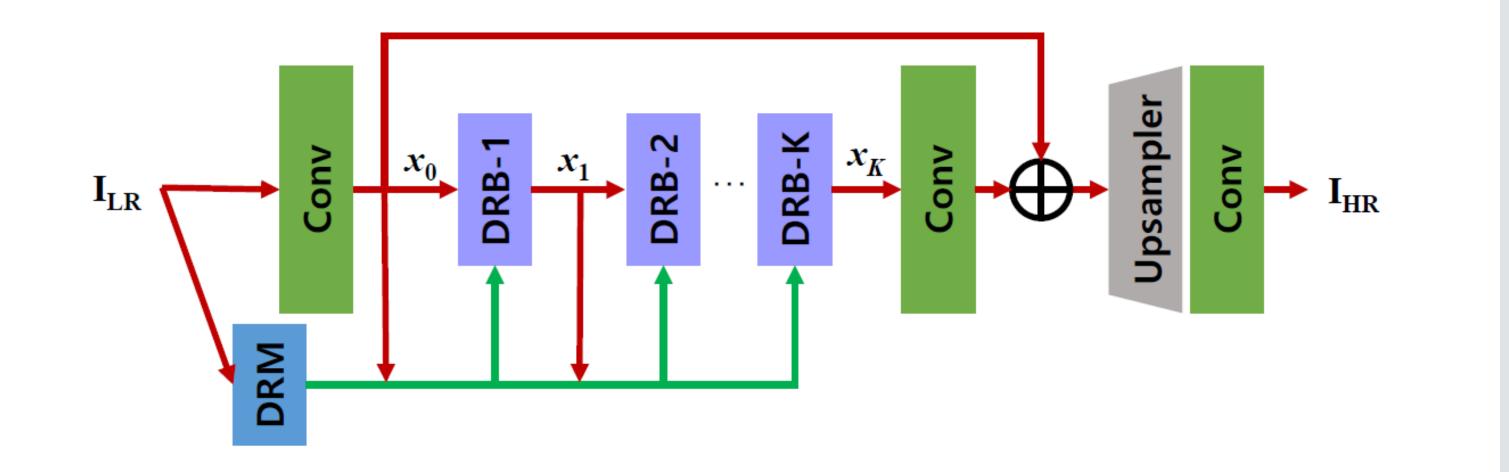

saturnian77@ispl.snu.ac.kr, soh90815@ispl.snu.ac.kr, nicho@snu.ac.kr

Dept. of Electrical and Computer Engineering, Seoul National University

Abstract

Dynamic Residual Module

✓ There have been attempts to solve the Single Image Super-resolution problem using lightweight networks, considering limited computational resources for real-world applications.

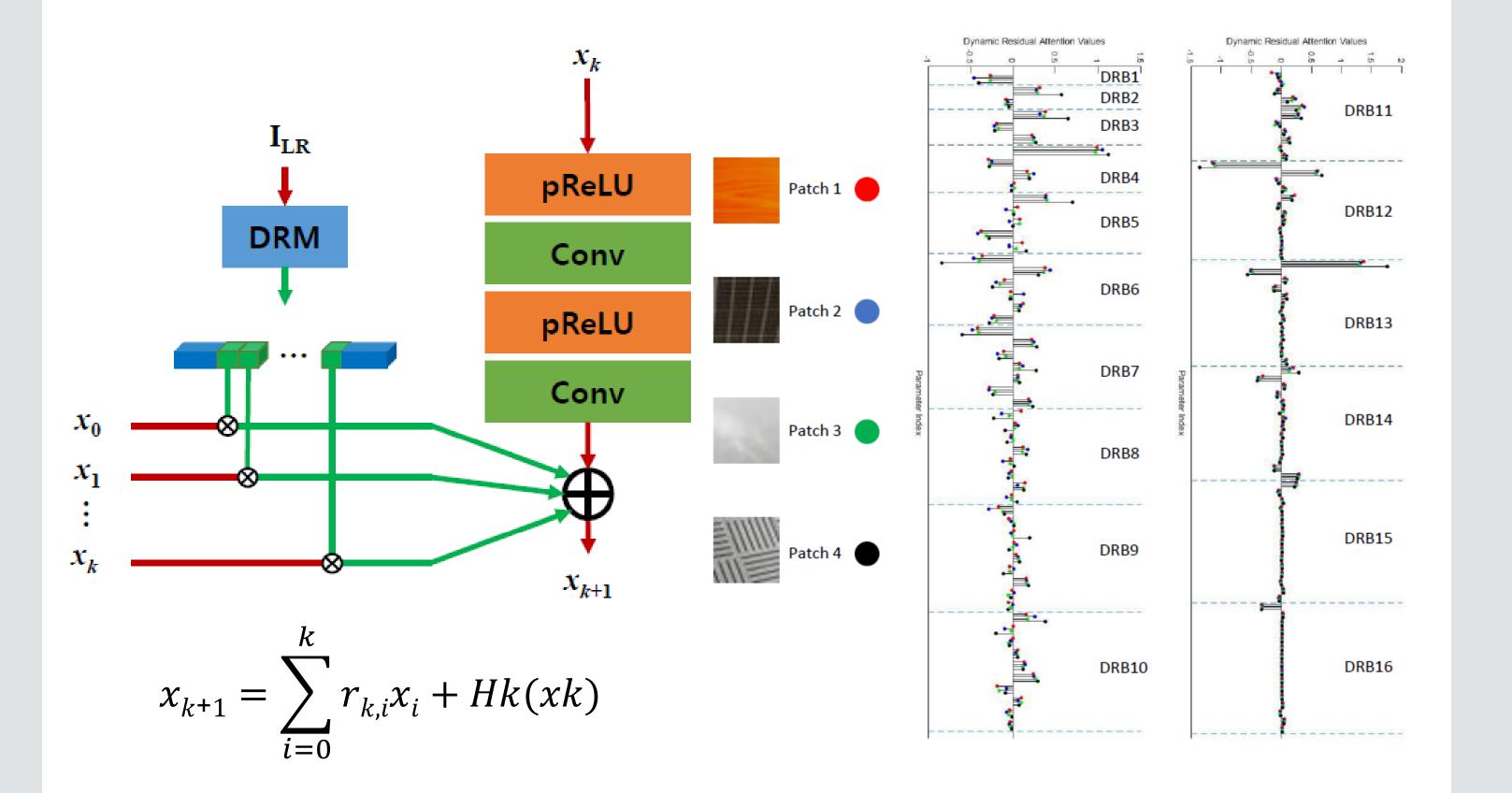


- ✓ In previous works, residual paths in networks are pre-fixed and manually designed by human researchers.
- ✓ The proposed method allows the network to dynamically select residual paths depending on the input image, based on the idea of attention mechanism.
- f 0.5H×0.5W×0.25K f 0.25H×0.25W×0.5K

 $f^{1 \times 1 \times K}$

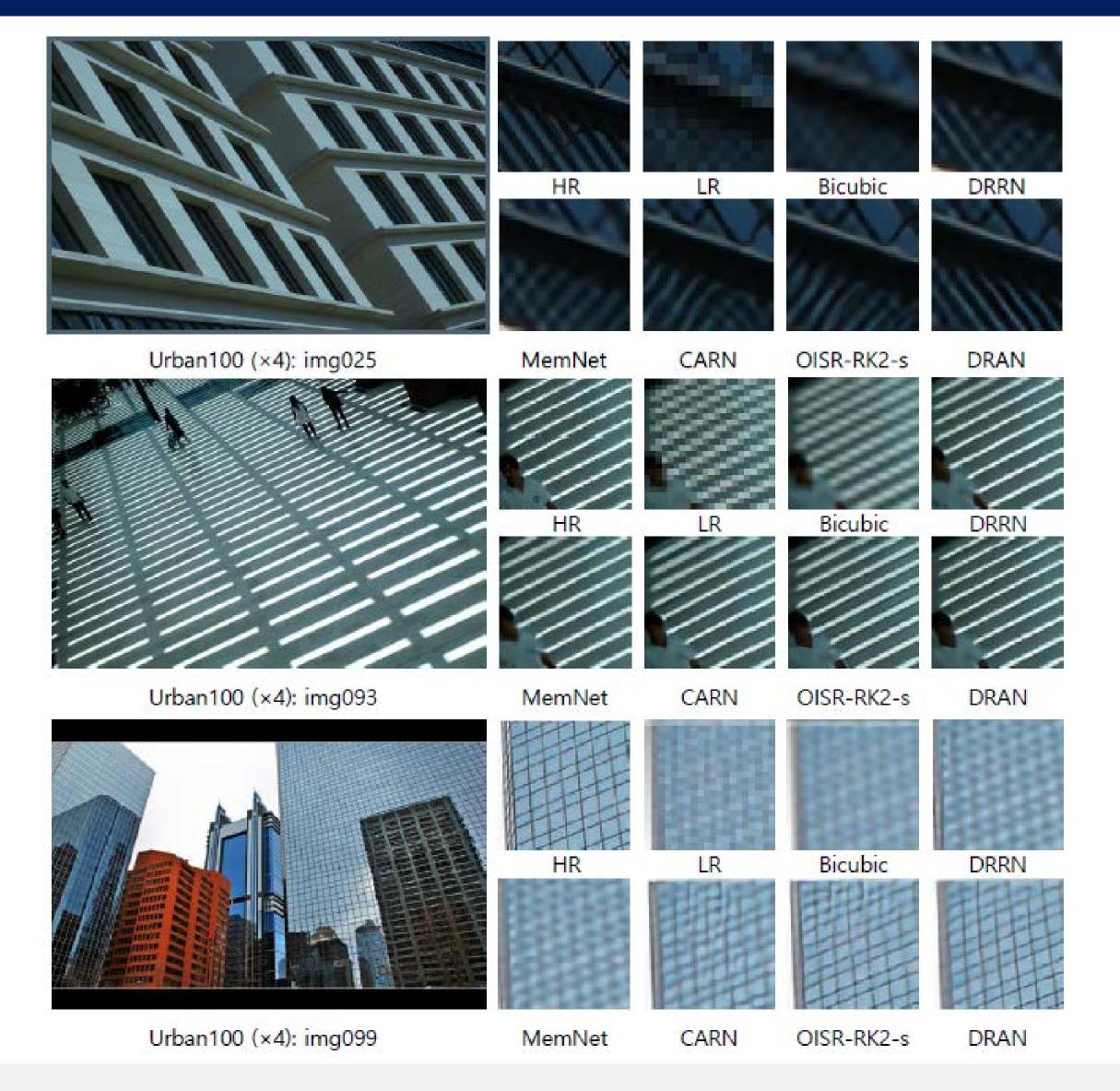
✓ Dynamic Residual Module uses the input image as prior information to compute optimal residual path attention parameter.

Network Structure


✓ Dynamic Residual Attention Network (DRAN) consists of five main parts: two convolution layers at the input and output side each, set of Dynamic Residual Blocks (DRBs), the Upsampler network and Dynamic Residual Module (DRM).

Qualitative Results

Scale	Method	Params	MAC	Set5 PSNR/SSIM	Set14 PSNR/SSIM	B100 PSNR/SSIM	Urban100 PSNR/SSIM
	Bicubic	-	-	33.66 / 0.9299	30.24 / 0.8688	29.56 / 0.8431	26.88 / 0.8403
	FSRCNN	0.01M	6.0G	37.00 / 0.9558	32.63 / 0.9088	31.53 / 0.8920	29.88 / 0.9020
	DRCN	1.77M	17974G	37.63 / 0.9588	33.04 / 0.9118	31.85 / 0.8942	30.75 / 0.9133
	DRRN	0.30M	6796.9G	37.74 / 0.9591	33.23 / 0.9136	32.05 / 0.8973	31.23 / 0.9188
	MemNet	0.68M	623.9G	37.78 / 0.9597	33.28 / 0.9143	32.08 / 0.8978	31.31 / 0.9195
	SelNet	0.97M	225.7G	37.89 / 0.9598	33.61 / 0.9160	32.08 / 0.8984	-
x2	CARN	1.59M	222.8G	37.76 / 0.9590	33.52 / 0.9166	32.09 / 0.8978	31.92 / 0.9256
λ2	FALSR-A	1.02M	234.7G	37.82 / 0.9595	33.55 / 0.9168	32.12 / 0.8987	31.93 / 0.9256
	FALSR-B	0.33M	74.7G	37.61 / 0.9585	33.29 / 0.9143	31.97 / 0.8967	31.28 / 0.9191
	FALSR-C	0.41M	93.7G	37.66 / 0.9586	33.26 / 0.9140	31.96 / 0.8965	31.24 / 0.9187
	OISR-RK2-s	1.37M	316.2G	37.98 / 0.9604	33.58 / 0.9172	32.18 / 0.8996	32.09 / 0.9281
	OISR-LF-s	1.37M	316.2G	38.02 / 0.9605	33.62 / 0.9178	32.20 / 0.9000	32.21 / 0.9290
	DRAN-s	0.79M	180.6G	37.89 / 0.9601	33.49 / 0.9171	32.14 / 0.8999	31.98 / 0.9272
	DRAN	1.48M	318.9G	38.05 / 0.9607	33.65 / 0.9179	32.20 / 0.9002	32.25 / 0.9296
x3	Bicubic	-		30.39 / 0.8682	27.55 / 0.7742	27.21 / 0.7385	24.46 / 0.7349
	FSRCNN	0.01M	5.0G	33.16 / 0.9140	29.43 / 0.8242	28.53 / 0.7910	26.43 / 0.8080
	DRCN	1.77M	17974G	33.82 / 0.9226	29.76 / 0.8311	28.80 / 0.7963	27.15 / 0.8276
	DRRN	0.30M	6796.9G	34.03 / 0.9244	29.96 / 0.8349	28.95 / 0.8004	27.53 / 0.8378
	MemNet	0.68M	623.9G	34.09 / 0.9248	30.00 / 0.8385	28.96 / 0.8001	27.56 / 0.8376
	SelNet	1.16M	120.0G	34.27 / 0.9257	30.30 / 0.8399	28.97 / 0.8025	-
	CARN	1.59M	118.8G	34.29 / 0.9255	30.29 / 0.8407	29.06 / 0.8034	28.06 / 0.8493
	OISR-RK2-s	1.55M	160.1G	34.43 / 0.9273	30.33 / 0.8420	29.10 / 0.8053	28.20 / 0.8534
	OISR-LF-s	1.55M	160.1G	34.39 / 0.9272	30.35 / 0.8426	29.11 / 0.8058	28.24 / 0.8544
	DRAN-s	0.97M	100.0G	34.30 / 0.9261	30.27 / 0.8413	29.05 / 0.8049	28.07 / 0.8509
	DRAN	1.66M	161.5G	34.50 / 0.9276	30.40 / 0.8437	29.13 / 0.8068	28.35 / 0.8567
x4	Bicubic	-	-	28.42 / 0.8104	26.00 / 0.7027	25.96 / 0.6675	23.14 / 0.6577
	FSRCNN	0.01M	4.6G	30.48 / 0.8628	27.49 / 0.7503	26.90 / 0.7101	24.52 / 0.7221
	DRCN	1.77M	17974G	31.53 / 0.8854	28.02 / 0.7670	27.23 / 0.7233	25.14 / 0.7510
	DRRN	0.30M	6796.9G	31.68 / 0.8888	28.21 / 0.7720	27.38 / 0.7284	25.44 / 0.7638
	MemNet	0.68M	623.9G	31.74 / 0.8893	28.26 / 0.7723	27.40 / 0.7281	25.50 / 0.7630
	SelNet	1.42M	83.1G	32.00 / 0.8931	28.49 / 0.7783	27.44 / 0.7325	-
	CARN	1.59M	90.9G	32.13 / 0.8937	28.60 / 0.7806	27.58 / 0.7349	26.07 / 0.7837
	OISR-RK2-s	1.52M	114.2G	32.21 / 0.8950	28.63 / 0.7822	27.58 / 0.7364	26.14 / 0.7874
	OISR-LF-s	1.52M	114.2G	32.14 / 0.8947	28.63 / 0.7819	27.60 / 0.7369	26.17 / 0.7888
	DRAN-s	0.94M	80.3G	32.09 / 0.8925	28.54 / 0.7810	27.53 / 0.7356	25.98 / 0.7835
	DRAN	1.62M	114.9G	32.27 / 0.8947	28.63 / 0.7833	27.61 / 0.7380	26.23 / 0.7909


- selectively accepts necessary information from preceding DRBs and sends the ✓ DRB processed feature to following DRBs.
- \checkmark DRM controls residual connection between DRBs according to the input image.

Dynamic Residual Attention

✓ Quantitative comparisons of our models with the previous lightweight models on benchmark datasets. The best performance is shown in red and the second best is shown in blue. The small-scale versions are suffixed by "-s."

Qualitative Results

- ✓ DRAN exploits selected features in the shallow part of the network considering the input image, which allows the DRB to use the features of various depths as needed.
- residual attention parameters emphasize more important features or weaken ✓ The unnecessary features from preceding building blocks.
- ✓ Proposed dynamic residual path structure guarantees more diverse combination of features compared to previous methods with pre-fixed residual paths.

✓ Qualitative comparisons for ×4 super-resolution with our method and other state-of-thearts on Urban100 datasets.