Gaussian Constrained Attention Network for Scene Text Recognition

Zhi Qiao¹, Xugong Qin¹, Yu Zhou^{1*}, Fei Yang², Weiping Wang¹

¹Institute of Information Engineering, Chinese Academy of Sciences ²TAL Education Group *Corresponding Author

Motivation

▲ 圈斜学院 信息工程研究所

上好未来

- Attention operation is inspired from Neural Machine Translation and Image Caption
- The attention alignments in text recognition are concentrated and like a Gaussian distribution
- Existing methods do not fully use this characteristic and may suffer from the problem of **attention diffusion**

Introduction

- We propose a novel Gaussian Constrained Refinement Module (GCRM) to refine the raw attention weights
- We apply GCRM into SAR^[1], and propose our **Gaussian Constrained Attention Network** (GCAN)

Experiment

• Ablation Study

[Methods	Methods Training Inference		Methods	Latt	IIIT5K	SVT	SVTP	IC15
ſ	SAR-reproduced	67.9ms	45.4ms	SAR-reproduced		93.0	86.7	77.0	76.1
	GCAN	75.5ms	54.3ms	SAR-reproduced	 Image: A second s	93.1	87.3	78.8	75.4
				with Estimation		93.4	88.1	78.4	75.6
GCAN consumes less than 10ms				with Estimation	 ✓ 	93.8	88.4	78.8	77.5
	more compared with SAR			with GCRM		93.6	86.9	79.1	77.0
				with GCRM	\checkmark	94.4	90.1	81.2	77.1

- > GCRM improves the performance with or without character-supervision
- > Estimation represents to estimate the Gaussian parameters without GCRM

First line of each image is the visualized attention weights of SAR
Second line is the visualized attention weights of GCAN

• Compared with previous methods

Methods	IIIT5K	SVT	IC13	IC15	SVTP	CUTE
Shi et al. [13]	81.2	82.7	89.6	-	-	-
Shi et al. [50]	81.9	81.9	88.6	-	71.8	59.2
Lee et al. [49]	78.4	80.7	90.0	-	-	-
Yang et al. [36]	-	-	-	-	75.8	69.3
Cheng et al. [37]	87.4	85.9	93.3	70.6	-	-
Cheng et al. [52]	87.0	82.8	-	68.2	73.0	76.8
Liu et al. [57]	92.0	85.5	91.1	74.2	78.9	-
Bai et al. [65]	88.3	87.5	94.4	73.9	-	-
Liu et al. [66]	87.0	-	92.9	-	-	-
Liu et al. [67]	89.4	87.1	<u>94.0</u>	-	73.9	62.5
Shi et al. [18]	93.4	89.5	91.8	76.1	78.5	79.5
Liao et al. [53]	91.9	86.4	91.5	-	-	79.9
Zhan et al. [56]	93.3	90.2	91.3	76.9	79.6	83.3
Xie et al. [60]	-	-	-	68.9	70.1	82.6
Li et al. [26]	91.5	84.5	91.0	69.2	76.4	83.3
Luo et al. [25]	91.2	88.3	92.4	74.7	76.1	77.4
Yang et al. [54]	94.4	88.9	93.9	78.7	<u>80.8</u>	87.5
Wang et al. [58]	94.3	89.2	93.9	74.5	80.0	84.4
SAR-reproduced	93.0	86.7	90.8	76.1	77.0	83.7
GCAN (Ours)	94.4	<u>90.1</u>	93.3	<u>77.1</u>	81.2	<u>85.6</u>

> GCAN achieves best performance on 2 benchmarks

[1] H. Li, P. Wang, C. Shen, and G. Zhang, "Show, attend and read: A simple and strong baseline for irregular text recognition," in AAAI, 2019, pp. 8610–8617

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SAR