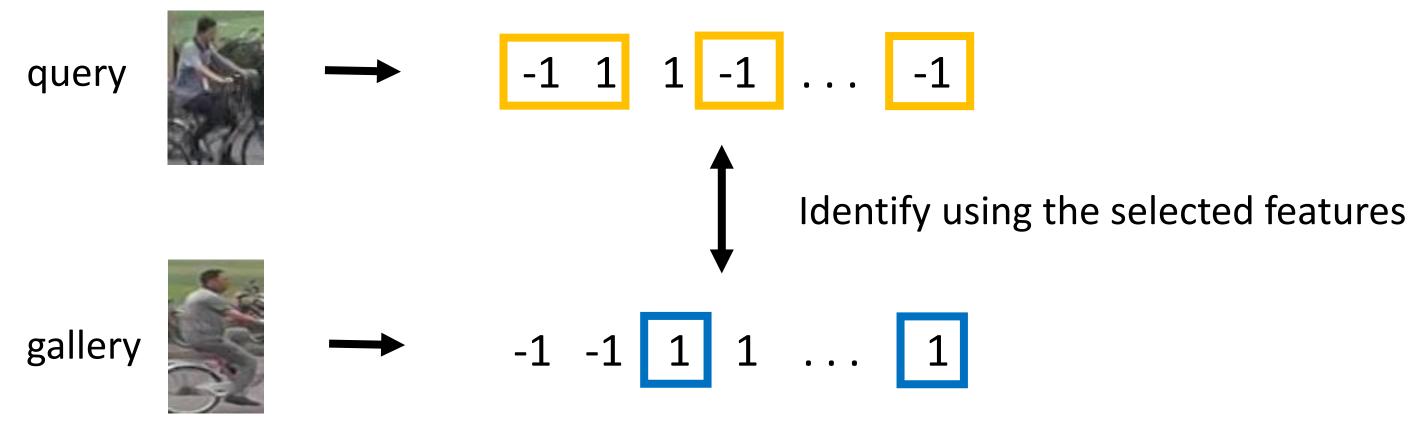
TOSHIBA

Sample-Dependent Distance for 1: N Identification via Discriminative Feature Selection

Naoki Kawamura, Susumu Kubota (Toshiba Corporation)

Overview

- The objective is to improve the accuracy of 1:N identification
- We proposed a metric learning method as the feature selection, as the post-processing



Feature extraction & Binary description

Feature selection for the extracted binary description is applied

For the acceleration, feature vectors are often binarized in a high dimensional space in collating a query and galleries. We focus on post-processing with the binary description.

Target

Tackling to false-acceptance

Extracted future vectors potentially includes misleading factors even after deep metric learning



 The existing methods discuss a metric space learned commonly for all the samples

The features appropriate for the identification would differ by samples

Proposed Method

- Select feature factors so that different but very similar identities can be discriminated
- Each pair of a query and galleries are collated using the feature selection manner different by the samples

Approach

For each sample, calculate feature selection manner

$$\underset{\mathbf{w}_{(\mathbf{x}_i)}}{\operatorname{arg\,min}} \frac{1}{K} \sum_{k} \left[\left(\mathbf{x}_i \circ \mathbf{w}_{(\mathbf{x}_i)} \right)^T \mathbf{y}_k^{(\mathbf{x}_i)} \right]^2,$$

$$s.t. \qquad \left\| \mathbf{w}_{(\mathbf{x}_i)} \right\|_0 \leq R$$

 $\mathbf{x}_i \in \{-1,1\}^D$: feature vector of the i-th sample $\mathbf{y}_k^{(\mathbf{x}_i)} \in \{-1,1\}^D$: k-nearest gallery sample of the different identity of \mathbf{x}_i $\mathbf{w}_{(\mathbf{x}_i)} \in \{0,1\}^D$: feature selection mask of \mathbf{x}_i

If the target sample is a query, v-nearest samples are skipped, where the v-nearest samples are regarded as having the same identity as that of the query.

Sample-dependent feature selection is bi-directionally applied in collating a query $m{p}$ and a gallery $m{g}_i$

$$h_{w_{(p)}}(p, g_i) = \frac{R - (w_{(p)} \circ p)^T g_i}{2}$$
 Hamming distance under the feature selection of p

$$\mathbf{h}_{\boldsymbol{w}} \ (\boldsymbol{p}, \boldsymbol{g}_i) = \frac{1}{2R} \Big(\mathbf{h}_{\boldsymbol{w}(p)}(\boldsymbol{p}, \boldsymbol{g}_i) + \mathbf{h}_{\boldsymbol{w}(g_i)}(\boldsymbol{p}, \boldsymbol{g}_i) \Big) \quad \text{proposed distance metric}$$
 for the identification

Experimental Results

 Comparable feature selection methods were applied to the feature vector outputs of a variety of models for ReID

Model	Method	FRR@FAR [%]		D oct 1-1 [0/]	400 A D FO/ 3	
Data: train → test		FAR=0.01%	FAR=0.1%	Rank1 [%]	MAP [%]	
OSNet market→market	baseline	36.8	13.9	94.5	84.4	
	Proposed	29.7	10.1	95.0	86.0	4
	ReliefF	36.9	13.9	94.5	84.3	
	Fisher Score	37.1	13.9	94.6	84.5	
OSNet duke→duke	baseline	43.1	22.3	87.3	73.3	
	Proposed	36.0	19.2	88.3	75.6	4
	ReliefF	42.9	22.5	87.2	73.3	
	Fisher Score	43.3	22.3	87.4	73.4	
OSNet msmt→market	baseline	79.7	57.2	68.0	42.1	
	Proposed	77.1	53.6	69.4	42.9	
	ReliefF	79.4	56.9	68.4	42.3	
	Fisher Score	80.2	58.0	68.3	42.3	
OSNet msmt→duke	baseline	62.3	40.4	67.2	49.3	
	Proposed	58.3	38.3	68.0	50.2	
	ReliefF	62.0	40.2	67.5	49.5	
	Fisher Score	62.3	40.3	67.5	49.7	
	baseline	84.7	68.0	46.6	24.2	
ResNet50	Proposed	83.8	66.7	47.2	24.0	
msmt→market	ReliefF	84.8	67.5	47.1	24.6	
	Fisher Score	85.1	68.3	46.9	24.5	
ResNet50 msmt→duke	baseline	74.2	54.9	51.6	33.0	
	Proposed	71.9	53.5	52.9	33.6	
	ReliefF	74.1	54.8	51.2	33.1	
	Fisher Score	74.3	54.9	52.1	33.3	

Performances were stably improved using the proposed method

threshold@FAR=0.01%